[go: up one dir, main page]

login
A137261
G.f.: (5764801*x^8-5764801*x^7+28812*x^4-28812*x^3+840*x-1200)/(x-1).
0
1200, 360, 360, 29172, 360, 360, 360, 5765161, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360
OFFSET
1,1
COMMENTS
The expansion here is simpler than that in the reference on page 192.
LINKS
Fan Chung, R. L. Graham, Primitive juggling sequences, Am. Math. Monthly 115 (3) (2008) 185-194
FORMULA
f(x)=(1 - 7*x + 12*x^4 - 84*x^5 + 120*x^7 - 1200x^8)/(1 - 7*x); a(n) = 7^(n+10*coefficient expansion(x^7*f(1/x))
MATHEMATICA
f[x_] = (1 - 7*x + 12*x^4 - 84*x^5 + 120*x^7 - 1200x^8)/(1 - 7*x); p[x] = ExpandAll[x^7*f[1/x]]; Table[ SeriesCoefficient[Series[p[x]*7^(n + 1), {x, 0, 30}], n], {n, 0, 30}]
CROSSREFS
Sequence in context: A250379 A190833 A351676 * A252531 A043408 A234917
KEYWORD
nonn
AUTHOR
Roger L. Bagula, Mar 11 2008
EXTENSIONS
Edited by N. J. A. Sloane, Mar 16 2008
STATUS
approved