[go: up one dir, main page]

login
A128099
Triangle read by rows: T(n,k) is the number of ways to tile a 3 X n rectangle with k pieces of 2 X 2 tiles and 3n-4k pieces of 1 X 1 tiles (0 <= k <= floor(n/2)).
20
1, 1, 1, 2, 1, 4, 1, 6, 4, 1, 8, 12, 1, 10, 24, 8, 1, 12, 40, 32, 1, 14, 60, 80, 16, 1, 16, 84, 160, 80, 1, 18, 112, 280, 240, 32, 1, 20, 144, 448, 560, 192, 1, 22, 180, 672, 1120, 672, 64, 1, 24, 220, 960, 2016, 1792, 448, 1, 26, 264, 1320, 3360, 4032, 1792, 128, 1, 28
OFFSET
0,4
COMMENTS
Row sums are the Jacobsthal numbers (A001045).
Apparently, T(n,k)/2^n equals the probability P that n will occur as a partial sum in a randomly-generated infinite sequence of 1s and 2s with n compositions (ordered partitions) into (n-2k) 1s and k 2s. Example: T(6,2)=24; P = 3/8 (24/2^6) that 6 will occur as a partial sum in the sequence with 2 (6-2*2) 1s and 2 2s. - Bob Selcoe, Jul 06 2013
From Johannes W. Meijer, Aug 28 2013: (Start)
The antidiagonal sums are A077949 and the backwards antidiagonal sums are A052947.
Moving the terms in each column of this triangle, see the example, upwards to row 0 gives the Pell-Jacobsthal triangle A013609 as a square array. (End)
The numbers in rows of the triangle are along "first layer" skew diagonals pointing top-right in center-justified triangle given in A013609 ((1+2*x)^n) and along (first layer) skew diagonals pointing top-left in center-justified triangle given in A038207 ((2+x)^n), see links. - Zagros Lalo, Jul 31 2018
If s(n) is the row sum at n, then the ratio s(n)/s(n-1) is approximately 2.000..., when n approaches infinity. - Zagros Lalo, Jul 31 2018
It appears that the rows of this array are the coefficients of the Jacobsthal polynomials (see MathWorld link). - Michel Marcus, Jun 15 2019
REFERENCES
Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 80-83, 357-358
LINKS
Isabel Cação, Helmuth R. Malonek, Maria Irene Falcão, and Graça Tomaz, Intrinsic Properties of a Non-Symmetric Number Triangle, J. Int. Seq., Vol. 26 (2023), Article 23.4.8.
Richard Fors, Independence Complexes of Certain Families of Graphs, Master's thesis in Mathematics at KTH, presented Aug 19 2011.
R. J. Mathar, Tiling n x m rectangles with 1 x 1 and s x s squares arXiv:1609.03964 [math.CO] (2016).
Eric Weisstein's World of Mathematics, Jacobsthal Polynomial
FORMULA
T(n, k) = 2^k*binomial(n-k,k) = 2^k*A011973(n,k).
G.f.: 1/(1-z-2*t*z^2).
Sum_{k=0..floor(n/2)} k*T(n,k) = A095977(n-1).
From Johannes W. Meijer, Aug 28 2013: (Start)
T(n, k) = 2*T(n-2, k-1) + T(n-1, k) with T(n, 0) = 1 and T(n, k) = 0 for k < 0 and k > floor(n/2).
T(n, k) = A013609(n-k, k), n >= 0 and 0 <= k <= floor(n/2). (End)
EXAMPLE
Triangle starts:
1;
1;
1, 2;
1, 4;
1, 6, 4;
1, 8, 12;
1, 10, 24, 8;
1, 12, 40, 32;
MAPLE
T := proc(n, k) if k<=n/2 then 2^k*binomial(n-k, k) else 0 fi end: for n from 0 to 16 do seq(T(n, k), k=0..floor(n/2)) od; # yields sequence in triangular form
T := proc(n, k) option remember: if k<0 or k > floor(n/2) then return(0) fi: if k = 0 then return(1) fi: 2*procname(n-2, k-1) + procname(n-1, k): end: seq(seq(T(n, k), k=0..floor(n/2)), n=0..13); # Johannes W. Meijer, Aug 28 2013
MATHEMATICA
Table[2^k*Binomial[n - k, k] , {n, 0, 25}, {k, 0, Floor[n/2]}] // Flatten (* G. C. Greubel, Dec 28 2016 *)
t[0, 0] = 1; t[n_, k_] := t[n, k] = If[n < 0 || k < 0, 0, t[n - 1, k] + 2 t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 15}, {k, 0, Floor[n/2]}] // Flatten (* Zagros Lalo, Jul 31 2018 *)
CROSSREFS
Cf. (Triangle sums) A001045, A095977, A077949, A052947, A113726, A052942, A077909.
Cf. (Similar triangles) A008315, A011973, A102541.
Sequence in context: A147418 A146386 A305098 * A182242 A261605 A239093
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, Feb 18 2007
STATUS
approved