[go: up one dir, main page]

login
A115872
Square array where row n gives all solutions k > 0 to the cross-domain congruence n*k = A048720(A065621(n),k), zero sequence (A000004) if no such solutions exist.
24
1, 2, 1, 3, 2, 3, 4, 3, 6, 1, 5, 4, 7, 2, 7, 6, 5, 12, 3, 14, 3, 7, 6, 14, 4, 15, 6, 7, 8, 7, 15, 5, 28, 7, 14, 1, 9, 8, 24, 6, 30, 12, 15, 2, 15, 10, 9, 28, 7, 31, 14, 28, 3, 30, 7, 11, 10, 30, 8, 56, 15, 30, 4, 31, 14, 3, 12, 11, 31, 9, 60, 24, 31, 5, 60, 15, 6, 3, 13, 12, 48, 10, 62, 28, 56, 6, 62, 28, 12, 6, 5, 14, 13, 51, 11, 63, 30, 60, 7, 63, 30, 15, 7, 10, 7
OFFSET
1,2
COMMENTS
Here * stands for ordinary multiplication and X means carryless (GF(2)[X]) multiplication (A048720).
Square array is read by descending antidiagonals, as A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), etc.
Rows at positions 2^k are 1, 2, 3, ..., (A000027). Row 2n is equal to row n.
Numbers on each row give a subset of positions of zeros at the corresponding row of A284270. - Antti Karttunen, May 08 2019
EXAMPLE
Fifteen initial terms of rows 1 - 19 are listed below:
1: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, ...
2: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, ...
3: 3, 6, 7, 12, 14, 15, 24, 28, 30, 31, 48, 51, 56, 60, 62, ...
4: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, ...
5: 7, 14, 15, 28, 30, 31, 56, 60, 62, 63, 112, 120, 124, 126, 127, ...
6: 3, 6, 7, 12, 14, 15, 24, 28, 30, 31, 48, 51, 56, 60, 62, ...
7: 7, 14, 15, 28, 30, 31, 56, 60, 62, 63, 112, 120, 124, 126, 127, ...
8: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, ...
9: 15, 30, 31, 60, 62, 63, 120, 124, 126, 127, 240, 248, 252, 254, 255, ...
10: 7, 14, 15, 28, 30, 31, 56, 60, 62, 63, 112, 120, 124, 126, 127, ...
11: 3, 6, 12, 15, 24, 27, 30, 31, 48, 51, 54, 60, 62, 63, 96, ...
12: 3, 6, 7, 12, 14, 15, 24, 28, 30, 31, 48, 51, 56, 60, 62, ...
13: 5, 10, 15, 20, 21, 30, 31, 40, 42, 45, 47, 60, 61, 62, 63, ...
14: 7, 14, 15, 28, 30, 31, 56, 60, 62, 63, 112, 120, 124, 126, 127, ...
15: 15, 30, 31, 60, 62, 63, 120, 124, 126, 127, 240, 248, 252, 254, 255, ...
16: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, ...
17: 31, 62, 63, 124, 126, 127, 248, 252, 254, 255, 496, 504, 508, 510, 511, ...
18: 15, 30, 31, 60, 62, 63, 120, 124, 126, 127, 240, 248, 252, 254, 255, ...
19: 7, 14, 28, 31, 56, 62, 63, 112, 119, 124, 126, 127, 224, 238, 248, ...
MATHEMATICA
X[a_, b_] := Module[{A, B, C, x},
A = Reverse@IntegerDigits[a, 2];
B = Reverse@IntegerDigits[b, 2];
C = Expand[
Sum[A[[i]]*x^(i-1), {i, 1, Length[A]}]*
Sum[B[[i]]*x^(i-1), {i, 1, Length[B]}]];
PolynomialMod[C, 2] /. x -> 2];
T[n_, k_] := Module[{x = BitXor[n-1, 2n-1], k0 = k},
For[i = 1, True, i++, If[n*i == X[x, i],
If[k0 == 1, Return[i], k0--]]]];
Table[T[n-k+1, k], {n, 1, 14}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Jan 04 2022 *)
PROG
(PARI)
up_to = 120;
A048720(b, c) = fromdigits(Vec(Pol(binary(b))*Pol(binary(c)))%2, 2);
A065621(n) = bitxor(n-1, n+n-1);
A115872sq(n, k) = { my(x = A065621(n)); for(i=1, oo, if((n*i)==A048720(x, i), if(1==k, return(i), k--))); };
A115872list(up_to) = { my(v = vector(up_to), i=0); for(a=1, oo, for(col=1, a, i++; if(i > up_to, return(v)); v[i] = A115872sq(col, (a-(col-1))))); (v); };
v115872 = A115872list(up_to);
A115872(n) = v115872[n]; \\ (Slow) - Antti Karttunen, May 08 2019
CROSSREFS
Transpose: A114388. First column: A115873.
Cf. also arrays A277320, A277810, A277820, A284270.
A few odd-positioned rows: row 1: A000027, Row 3: A048717, Row 5: A115770 (? Checked for all values less than 2^20), Row 7: A115770, Row 9: A115801, Row 11: A115803, Row 13: A115772, Row 15: A115801 (? Checked for all values less than 2^20), Row 17: A115809, Row 19: A115874, Row 49: A114384, Row 57: A114386.
Sequence in context: A240450 A352129 A340351 * A133926 A144337 A143929
KEYWORD
nonn,tabl
AUTHOR
Antti Karttunen, Feb 07 2006
EXTENSIONS
Example section added and the data section extended up to n=105 by Antti Karttunen, May 08 2019
STATUS
approved