[go: up one dir, main page]

login
A101104
a(1)=1, a(2)=12, a(3)=23, and a(n)=24 for n>=4.
9
1, 12, 23, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24
OFFSET
1,2
COMMENTS
Original name: The first summation of row 4 of Euler's triangle - a row that will recursively accumulate to the power of 4.
LINKS
D. J. Pengelley, The bridge between the continuous and the discrete via original sources in Study the Masters: The Abel-Fauvel Conference [pdf], Kristiansand, 2002, (ed. Otto Bekken et al), National Center for Mathematics Education, University of Gothenburg, Sweden, in press.
Eric Weisstein, Link to section of MathWorld: Worpitzky's Identity of 1883
Eric Weisstein, Link to section of MathWorld: Eulerian Number
Eric Weisstein, Link to section of MathWorld: Nexus number
Eric Weisstein, Link to section of MathWorld: Finite Differences
FORMULA
a(k) = MagicNKZ(4,k,1) where MagicNKZ(n,k,z) = Sum_{j=0..k+1} (-1)^j*binomial(n+1-z,j)*(k-j+1)^n (cf. A101095). That is, a(k) = Sum_{j=0..k+1} (-1)^j*binomial(4, j)*(k-j+1)^4.
a(1)=1, a(2)=12, a(3)=23, and a(n)=24 for n>=4. - Joerg Arndt, Nov 30 2014
G.f.: x*(1+11*x+11*x^2+x^3)/(1-x). - Colin Barker, Apr 16 2012
MATHEMATICA
MagicNKZ = Sum[(-1)^j*Binomial[n+1-z, j]*(k-j+1)^n, {j, 0, k+1}]; Table[MagicNKZ, {n, 4, 4}, {z, 1, 1}, {k, 0, 34}]
Join[{1, 12, 23}, LinearRecurrence[{1}, {24}, 56]] (* Ray Chandler, Sep 23 2015 *)
CROSSREFS
For other sequences based upon MagicNKZ(n,k,z):
..... | n = 1 | n = 2 | n = 3 | n = 4 | n = 5 | n = 6 | n = 7
---------------------------------------------------------------------------
z = 0 | A000007 | A019590 | .......MagicNKZ(n,k,0) = A008292(n,k+1) .......
z = 1 | A000012 | A040000 | A101101 | thisSeq | A101100 | ....... | .......
z = 2 | A000027 | A005408 | A008458 | A101103 | A101095 | ....... | .......
z = 3 | A000217 | A000290 | A003215 | A005914 | A101096 | ....... | .......
z = 4 | A000292 | A000330 | A000578 | A005917 | A101098 | ....... | .......
z = 5 | A000332 | A002415 | A000537 | A000583 | A022521 | ....... | A255181
Cf. A101095 for an expanded table and more about MagicNKZ.
Sequence in context: A227072 A066458 A246342 * A330212 A114455 A048992
KEYWORD
easy,nonn
AUTHOR
Cecilia Rossiter, Dec 15 2004
EXTENSIONS
New name from Joerg Arndt, Nov 30 2014
Original Formula edited and Crossrefs table added by Danny Rorabaugh, Apr 22 2015
STATUS
approved