[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A099351
Numbers k such that 5*k! - 1 is prime.
10
3, 5, 8, 13, 20, 25, 51, 97, 101, 241, 266, 521, 1279, 1750, 2204, 2473, 4193, 5181, 10080
OFFSET
1,1
COMMENTS
a(15) > 1879. - Jinyuan Wang, Feb 04 2020
a(17) > 3500. - Michael S. Branicky, Mar 06 2021
EXAMPLE
k = 5 is here because 5*5! - 1 = 599 is prime.
MAPLE
for n from 0 to 1000 do if isprime(5*n! - 1) then print(n) end if end do;
MATHEMATICA
Select[Range[550], PrimeQ[5#!-1]&] (* Harvey P. Dale, Nov 27 2013 *)
PROG
(PARI) is(n)=ispseudoprime(5*n!-1) \\ Charles R Greathouse IV, Jun 13 2017
(Python)
from sympy import isprime
from math import factorial
print([k for k in range(300) if isprime(5*factorial(k) - 1)]) # Michael S. Branicky, Mar 05 2021
KEYWORD
nonn,more
AUTHOR
Brian Kell, Oct 12 2004
EXTENSIONS
a(13)-a(14) from Jinyuan Wang, Feb 04 2020
a(15)-a(16) from Michael S. Branicky, Mar 05 2021
a(17)-a(18) from Michael S. Branicky, Apr 03 2023
a(19) from Michael S. Branicky, Jul 12 2024
STATUS
approved