[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A096696
Consider the n-th prime, p_n, as the beginning of 2k+1 consecutive primes; then a(n) = p_(n+k) a balanced prime of order k, k maximized, or 0 if no such prime exists.
0
0, 5, 29, 37, 0, 0, 0, 0, 0, 149, 53, 0, 53, 71, 137, 227, 0, 0, 89, 79, 0, 0, 0, 0, 179, 0, 0, 173, 173, 0, 0, 419, 0, 157, 0, 157, 173, 0, 173, 0, 263, 0, 0, 0, 0, 211, 229, 0, 353, 397, 0, 0, 353, 359, 409, 577, 0, 353, 383, 353, 0, 0, 0, 0, 0, 0, 349, 349, 0, 0, 0, 397, 373
OFFSET
1,2
COMMENTS
a(n) either equals 0 or belongs to A090403.
EXAMPLE
a(2) = 5 because beginning with the second prime, 3, there is a run of three prime, (3,5,7) the average and median of which is 5.
a(5) = 0 because there does not exist a run of 2k + 1 primes such that the arithmetic mean and the median are the same.
MATHEMATICA
f[n_] := Block[{k = 1, p = 0}, While[k < 10^4, If[(Plus @@ Table[Prime[i], {i, n, n + 2k}]) == (2k + 1)Prime[n + k], p = Prime[n + k]]; k++ ]; p]; Table[ f[n], {n, 74}]
CROSSREFS
Cf. A090403.
Sequence in context: A321701 A243012 A053244 * A115279 A279393 A182288
KEYWORD
nonn
AUTHOR
Robert G. Wilson v, Jul 02 2004
STATUS
approved