[go: up one dir, main page]

login
A091305
Primes of the form p*q - p - q, where p and q are primes.
3
3, 5, 7, 11, 17, 19, 23, 29, 31, 41, 43, 47, 59, 71, 79, 83, 101, 103, 107, 131, 137, 139, 149, 163, 167, 179, 191, 197, 199, 211, 223, 227, 239, 251, 263, 269, 271, 281, 311, 331, 347, 359, 379, 383, 419, 431, 443, 461, 463, 467, 479, 491, 499, 503, 521, 523
OFFSET
1,1
COMMENTS
Some primes have no unique representation (besides of symmetry in p,q!), e.g. 11 with (p,q)=(2,13) and (3,7).
EXAMPLE
31 is a member with p=3, q=17.
MATHEMATICA
mp[{p_, q_}]:=p*q-p-q; Take[Union[Select[mp/@Subsets[Prime[Range[100]], {2}], PrimeQ]], 60] (* Harvey P. Dale, Nov 27 2011 *)
PROG
(PARI) isA091305(p)=fordiv(p++, d, if(isprime(d+1)&isprime(p/d+1), return(isprime(p-1)))) \\ Charles R Greathouse IV, Feb 15 2011
CROSSREFS
Primes of the form p*q + p + q: A066938. Primes of the form p*q + p - q: A091301.
Sequence in context: A082373 A116959 A249505 * A164319 A085498 A225223
KEYWORD
easy,nice,nonn
AUTHOR
Zak Seidov, Feb 21 2004
STATUS
approved