OFFSET
1,3
COMMENTS
As Alois P. Heinz has pointed out, the e.g.f in the Example section does not match the offset. However, the identity a(n) = A091481(n)/n holds with the present offset of 1. - N. J. A. Sloane, Jun 23 2017
REFERENCES
F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Cambridge, 1998, p. 185 (3.1.84).
LINKS
Maryam Bahrani and Jérémie Lumbroso, Enumerations, Forbidden Subgraph Characterizations, and the Split-Decomposition, arXiv:1608.01465 [math.CO], 2016.
FORMULA
a(n) = A091481(n)/n.
From Paul D. Hanna, Jun 01 2012: (Start)
E.g.f.: (1/x)*Series_Reversion( x/exp(x+x^2/2) ).
E.g.f. satisfies: A(x) = exp( x*A(x) + x^2*A(x)^2/2 ).
E.g.f. satisfies: A( x/exp(x+x^2/2) ) = exp(x+x^2/2).
(End)
a(n+1) = n! * Sum_{k=0..n} (1/2)^(n-k) * (n+1)^(k-1) * binomial(k,n-k)/k!. - Seiichi Manyama, Aug 19 2023
EXAMPLE
E.g.f.: A(x) = 1 + x + 4*x^2/2! + 28*x^3/3! + 290*x^4/4! + 3996*x^5/5! +...
MATHEMATICA
CoefficientList[1/x InverseSeries[x/Exp[x+x^2/2]+O[x]^20], x] Range[0, 18]! (* Jean-François Alcover, Aug 06 2018 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Christian G. Bower, Jan 14 2004
STATUS
approved