OFFSET
1,1
COMMENTS
Their square ends in the digit 4. - Kausthub Gudipati, Sep 08 2011
10*a(n) = 20, 80, 120, 180, 220, ... are the only numbers written in French ending in "vingt(s)". - Paul Curtz, Aug 02 2018
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..5000
Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
FORMULA
a(n) = 2 * A047209(n).
a(n) = 10*n - a(n-1) - 10 (with a(1)=2). - Vincenzo Librandi, Nov 16 2010
G.f.: 2*x*(1+3*x+x^2)/((1+x)*(1-x)^2). - Bruno Berselli, Sep 08 2011
a(1) = 2. For n > 1, a(n) = a(n-1) + A226294(n). - Felix Fröhlich, Aug 02 2018
Sum_{n>=1} (-1)^(n+1)/a(n) = sqrt(1+2/sqrt(5))*Pi/10. - Amiram Eldar, Dec 28 2021
E.g.f.: 2 + ((10*x - 5)*exp(x) + exp(-x))/2. - David Lovler, Sep 03 2022
From Amiram Eldar, Nov 23 2024: (Start)
Product_{n>=1} (1 - (-1)^n/a(n)) = tan(3*Pi/10) (A019952).
Product_{n>=1} (1 + (-1)^n/a(n)) = cosec(2*Pi/5)/2 (= A179290 / 2). (End)
MATHEMATICA
Union@ Flatten@ Outer[Plus, {2, 8}, 10 Range[0, 28]] (* or *)
CoefficientList[Series[2 (1 + 3x + x^2)/((1 + x) (1 - x)^2), {x, 0, 57}], x] (* Michael De Vlieger, Aug 02 2018 *)
LinearRecurrence[{1, 1, -1}, {2, 8, 12}, 61] (* Robert G. Wilson v, Aug 08 2018 *)
PROG
(PARI) is(n) = #setintersect([2, 8], [n%10]) > 0 \\ Felix Fröhlich, Aug 02 2018
(PARI) Vec(2*x*(1+3*x+x^2)/((1+x)*(1-x)^2) + O(x^60)) \\ Felix Fröhlich, Aug 02 2018
(Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(2*x*(1+3*x+x^2)/((1+x)*(1-x)^2))); // G. C. Greubel, Aug 08 2018
CROSSREFS
KEYWORD
nonn,easy,changed
AUTHOR
Giovanni Teofilatto, Feb 07 2004
EXTENSIONS
Edited and extended by Ray Chandler, Feb 10 2004
STATUS
approved