[go: up one dir, main page]

login
A090570
Numbers that are congruent to {0, 1} mod 9.
9
0, 1, 9, 10, 18, 19, 27, 28, 36, 37, 45, 46, 54, 55, 63, 64, 72, 73, 81, 82, 90, 91, 99, 100, 108, 109, 117, 118, 126, 127, 135, 136, 144, 145, 153, 154, 162, 163, 171, 172, 180, 181, 189, 190, 198, 199, 207, 208, 216, 217, 225, 226
OFFSET
1,3
FORMULA
A145389(a(n)) = A010888(a(n)). - Reinhard Zumkeller, Oct 10 2008
a(n) = 9*n - a(n-1) - 17 (with a(1)=0). - Vincenzo Librandi, Nov 16 2010
From R. J. Mathar, Oct 08 2011: (Start)
a(n) = 9*n/2 - 25/4 - 7*(-1)^n/4.
G.f.: x^2*(1+8*x)/( (1+x)*(1-x)^2 ). (End)
a(n+1) = Sum_{k>=0} A030308(n,k)*A005010(k-1), with A005010(-1)=1. - Philippe Deléham, Oct 17 2011.
E.g.f.: 8 + ((18*x - 25)*exp(x) - 7*exp(-x))/4. - David Lovler, Sep 03 2022
EXAMPLE
13 is 1101 in base 2, so a(13+1) = a(14) = 36*1 + 18*1 + 9*0 + 1*1 = 36+18+1 = 55. - Philippe Deléham, Oct 17 2011
PROG
(PARI) forstep(n=0, 200, [1, 8], print1(n", ")) \\ Charles R Greathouse IV, Oct 17 2011
CROSSREFS
Union of A008591 and A017173. - Reinhard Zumkeller, Oct 10 2008
Sequence in context: A217935 A100595 A107433 * A131417 A268135 A058369
KEYWORD
nonn,easy
AUTHOR
Giovanni Teofilatto, Feb 25 2004
STATUS
approved