[go: up one dir, main page]

login
A086058
Decimal expansion of conjectured value of delta related to the Masser-Gramain constant.
5
1, 8, 2, 2, 8, 2, 5, 2, 4, 9, 6, 7, 8, 8, 4, 7, 0, 3, 2, 9, 9, 5, 3, 2, 8, 7, 1, 6, 2, 6, 1, 4, 6, 4, 9, 4, 9, 4, 7, 5, 6, 9, 3, 1, 1, 8, 8, 9, 4, 8, 5, 0, 2, 1, 8, 3, 9, 3, 8, 1, 5, 6, 1, 3, 0, 3, 7, 0, 9, 0, 9, 5, 6, 4, 4, 6, 4, 0, 1, 6, 6, 7, 5, 7, 2, 1, 9, 5, 3, 2, 5, 7, 3, 2, 3, 4, 4, 5, 3, 2, 4, 7
OFFSET
1,2
COMMENTS
Numerical work by Melquiond et al. (see reference) disproves Gramain's conjecture, correct bounds for the Masser-Gramain constant delta are: 1.819776 < delta < 1.819833. - Vaclav Kotesovec, Apr 27 2015
LINKS
Guillaume Melquiond, W. Georg Nowak, Paul Zimmermann, Numerical approximation of the Masser-Gramain constant to four decimal places, Mathematics of Computation, Volume 82, Number 282, April 2013, Pages 1235-1246
Eric Weisstein's World of Mathematics, Masser-Gramain Constant
FORMULA
Equals 1 + A241017.
Equals 1 + A062089/Pi.
EXAMPLE
1.82282524967884703299532871626146494947569311889485021839381561303709...
MATHEMATICA
RealDigits[ 1 + 2*EulerGamma + 2*Log[2] + 3*Log[Pi] - 4*Log[Gamma[1/4]], 10, 102] // First (* Jean-François Alcover, Feb 07 2013, after Eric W. Weisstein *)
PROG
(PARI) 1+2*Euler+2*log(2)+3*log(Pi)-4*lngamma(1/4) \\ Charles R Greathouse IV, Dec 08 2014
CROSSREFS
Sequence in context: A021928 A185111 A319188 * A241017 A114314 A013662
KEYWORD
nonn,cons
AUTHOR
Eric W. Weisstein, Jul 07 2003
STATUS
approved