OFFSET
1,1
COMMENTS
Numbers whose square is decomposable in 3 different ways into the sum of two nonzero squares: these are those with exactly one prime divisor of the form 4k+1 with multiplicity three. - Jean-Christophe Hervé, Nov 11 2013
LINKS
Ray Chandler, Table of n, a(n) for n = 1..10000 (first 1140 terms from Jean-Christophe Hervé)
Eric Weisstein's World of Mathematics, Pythagorean Triple
FORMULA
Terms are obtained by the products A004144(k)*A002144(p)^3 for k, p > 0, ordered by increasing values. - Jean-Christophe Hervé, Nov 12 2013
EXAMPLE
a(1) = 125 = 5^3, and 125^2 = 100^2 + 75^2 = 117^2 + 44^2 = 120^2 + 35^2. - Jean-Christophe Hervé, Nov 11 2013
MATHEMATICA
Clear[lst, f, n, i, k] f[n_]:=Module[{i=0, k=0}, Do[If[Sqrt[n^2-i^2]==IntegerPart[Sqrt[n^2-i^2]], k++ ], {i, n-1, 1, -1}]; k/2]; lst={}; Do[If[f[n]==3, AppendTo[lst, n]], {n, 4*5!}]; lst (* Vladimir Joseph Stephan Orlovsky, Aug 12 2009 *)
CROSSREFS
Cf. A004144 (0), A084645 (1), A084646 (2), A084648 (4), A084649 (5), A097219 (6), A097101 (7), A290499 (8), A290500 (9), A097225 (10), A290501 (11), A097226 (12), A097102 (13), A290502 (14), A290503 (15), A097238 (16), A097239 (17), A290504 (18), A290505 (19), A097103 (22), A097244 (31), A097245 (37), A097282 (40), A097626 (67).
KEYWORD
nonn
AUTHOR
Eric W. Weisstein, Jun 01 2003
STATUS
approved