[go: up one dir, main page]

login
A082695
Decimal expansion of zeta(2)*zeta(3)/zeta(6).
51
1, 9, 4, 3, 5, 9, 6, 4, 3, 6, 8, 2, 0, 7, 5, 9, 2, 0, 5, 0, 5, 7, 0, 7, 0, 3, 6, 2, 5, 7, 4, 7, 6, 3, 4, 3, 7, 1, 8, 7, 8, 5, 8, 5, 0, 1, 7, 6, 7, 8, 0, 5, 7, 1, 6, 0, 2, 6, 6, 3, 5, 6, 8, 8, 9, 0, 0, 5, 3, 4, 9, 5, 0, 6, 9, 3, 5, 5, 4, 0, 5, 3, 9, 4, 8, 1, 7, 9, 1, 0, 0, 8, 2, 1, 1, 1, 1, 3, 0, 1, 0, 6, 9, 0, 5
OFFSET
1,2
COMMENTS
Equals the Dirichlet zeta-function Sum_{n>=1} A001615(n)/n^s at s=3. - R. J. Mathar, Apr 02 2011
Dressler shows that this is the average value of A014197, that is, the number of values m such that phi(m) <= n is asymptotically n times this constant. Erdős had shown earlier that this limit exists. - Charles R Greathouse IV, Nov 26 2013
From Stanislav Sykora, Nov 14 2014: (Start)
Equals lim_{n->infinity} (Sum_{k=1..n} k/phi(k))/n, i.e., the limit mean value of k/phi(k), where phi(k) is Euler's totient function.
Also equals lim_{n->infinity} (Sum_{k=1..n} 1/phi(k))/log(n).
Proofs are trivial using the formulas for Sum_{k=1..n} k/phi(k) and Sum_{k=1..n} 1/phi(k) listed in the Wikipedia link.
For the limit mean value of phi(k)/k, see A059956. (End)
The asymptotic mean of A005361. - Amiram Eldar, Apr 13 2020
REFERENCES
Joe Roberts, Lure of the Integers, Mathematical Association of America, 1992. See p. 74.
LINKS
Paul T. Bateman, The distribution of values of the Euler function, Acta Arithmetica 21:1 (1972), pp. 329-345.
Olivier Bordellès and Benoit Cloitre, An Alternating Sum Involving the Reciprocal of Certain Multiplicative Functions, J. Int. Seq. 16 (2013) #13.6.3.
Robert E. Dressler, A density which counts multiplicity, Pacific J. Math. 34 (1970), pp. 371-378.
Paul Erdős, Some remarks on Euler's ϕ function and some related problems, Bull. Amer. Math. Soc. 51 (1945), pp. 540-544.
J. von zur Gathen et al., Average order in cyclic groups, J. Theor. Nombres Bordeaux, 16 (2004), 107-123. Lists several other papers where this constant arises.
S. W. Golomb, Powerful numbers, Amer. Math. Monthly, Vol. 77 (1970), 848-852.
D. Handelman, Invariants for critical dimension groups and permutation-Hermite equivalence, arXiv preprint arXiv:1309.7417 [math.AC], 2013.
Eric Weisstein's World of Mathematics, Totient Summatory Function.
Eric Weisstein's World of Mathematics, Powerful Number.
FORMULA
Decimal expansion of Product_{p prime} (1+1/p/(p-1)) = zeta(2)*zeta(3)/zeta(6) = 1.94359643682075920505707...
The sum of the reciprocals of the powerful numbers, A001694. - T. D. Noe, May 03 2006
Equals A013661 * A002117 / A013664 = 1 / A068468 = zeta(3) * 315/(2*Pi^4) = zeta(3) * A157292.
Equals Sum_{k>=1} mu(k)^2/(k*phi(k)) (the sum of reciprocals of the squarefree numbers multiplied by their Euler totient function values, A000010). - Amiram Eldar, Aug 18 2020
EXAMPLE
1.94359643682075920505707036257476343718785850176780571602663568890 ...
MATHEMATICA
First@RealDigits[ Zeta[2]*Zeta[3]/Zeta[6], 10, 100]
RealDigits[ 315 Zeta[3]/(2 Pi^4), 10, 111][[1]] (* Robert G. Wilson v, Aug 11 2014 *)
PROG
(PARI) zeta(3)*315/2/Pi^4
KEYWORD
cons,nonn
AUTHOR
Benoit Cloitre, Apr 12 2003
EXTENSIONS
New definition from Eric W. Weisstein, May 04 2006
STATUS
approved