[go: up one dir, main page]

login
A078869
Number of n-tuples with elements in {2,4,6} which can occur as the differences between n+1 consecutive primes > n+1. (Values of a(11), ..., a(18) are conjectured to be correct, but are only known to be upper bounds.)
2
3, 7, 15, 26, 38, 48, 67, 92, 105, 108, 109, 118, 130, 128, 112, 80, 36, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
OFFSET
1,1
COMMENTS
The ">n+1" rules out n-tuples like (2,2), which only occurs for the primes 3, 5, 7. All terms from a(19) on equal 0.
An n-tuple (a_1,a_2,...,a_n) is counted iff the partial sums 0, a_1, a_1+a_2, ..., a_1+...+a_n do not contain a complete residue system (mod p) for any prime p.
LINKS
Eric Weisstein's World of Mathematics, k-Tuple Conjecture
MATHEMATICA
test[tuple_] := Module[{r, sums, i, j}, r=Length[tuple]; sums=Prepend[tuple.Table[If[j>=i, 1, 0], {i, 1, r}, {j, 1, r}], 0]; For[i=1, Prime[i]<=r+1, i++, If[Length[Union[Mod[sums, Prime[i]]]]==Prime[i], Return[False]]]; True]; tuples[0]={{}}; tuples[n_] := tuples[n]=Select[Flatten[Outer[Append, tuples[n-1], {2, 4, 6}, 1], 1], test]; a[n_] := Length[tuples[n]]
CROSSREFS
The 26 4-tuples and 38 5-tuples are in A078868 and A078870. Cf. A001359, A008407, A029710, A031924, A022004-A022007, A078852, A078858, A078946-A078969, A020497.
Sequence in context: A034757 A328688 A291651 * A011890 A131076 A001648
KEYWORD
nonn
AUTHOR
Labos Elemer, Dec 19 2002
EXTENSIONS
Edited by Dean Hickerson, Dec 20 2002
STATUS
approved