[go: up one dir, main page]

login
A074981
Conjectured list of positive numbers which are not of the form r^i - s^j, where r,s,i,j are integers with r>0, s>0, i>1, j>1.
22
6, 14, 34, 42, 50, 58, 62, 66, 70, 78, 82, 86, 90, 102, 110, 114, 130, 134, 158, 178, 182, 202, 206, 210, 226, 230, 238, 246, 254, 258, 266, 274, 278, 290, 302, 306, 310, 314, 322, 326, 330, 358, 374, 378, 390, 394, 398, 402, 410, 418, 422, 426
OFFSET
1,1
COMMENTS
This is a famous hard problem and the terms shown are only conjectured values.
The terms shown are not the difference of two powers below 10^19. - Don Reble
One can immediately represent all odd numbers and multiples of 4 as differences of two squares. - Don Reble
Ed Pegg Jr remarks (Oct 07 2002) that the techniques of Preda Mihailescu (see MathWorld link) might make it possible to prove that 6, 14, ... are indeed members of this sequence.
Numbers n such that there is no solution to Pillai's equation. - T. D. Noe, Oct 12 2002
The terms shown are not the difference of two powers below 10^27. - Mauro Fiorentini, Jan 03 2020
REFERENCES
R. K. Guy, Unsolved Problems in Number Theory, Sections D9 and B19.
P. Ribenboim, Catalan's Conjecture, Academic Press NY 1994.
T. N. Shorey and R. Tijdeman, Exponential Diophantine Equations, Cambridge University Press, 1986.
LINKS
A. Baker, Review of "Catalan's conjecture" by P. Ribenboim, Bull. Amer. Math. Soc. 32 (1995), 110-112.
M. E. Bennett, On Some Exponential Equations Of S. S. Pillai, Canad. J. Math. 53 (2001), 897-922.
J. Boéchat, M. Mischler, La conjecture de Catalan racontée a un ami qui a le temps, arXiv:math/0502350 [math.NT], 2005-2006.
C. K. Caldwell, The Prime Glossary, Catalan's Problem
P. Ribenboim, Catalan's Conjecture, Séminaire de Philosophie et Mathématiques, 6 (1994), pp. 1-11.
P. Ribenboim, Catalan's Conjecture, Amer. Math. Monthly, Vol. 103(7) Aug-Sept 1996, pp. 529-538.
Gérard Villemin, Conjecture de Catalan (French)
Eric Weisstein's World of Mathematics, Draft Proof of Catalan's Conjecture Circulated
Eric Weisstein's World of Mathematics, Pillai's Conjecture
EXAMPLE
Examples showing that certain numbers are not in the sequence: 10 = 13^3 - 3^7, 22 = 7^2 - 3^3, 29 = 15^2 - 14^2, 31 = 2^5 - 1, 52 = 14^2 - 12^2, 54 = 3^4 - 3^3, 60 = 2^6 - 2^2, 68 = 10^2 - 2^5, 72 = 3^4 - 3^2, 76 = 5^3 - 7^2, 84 = 10^2 - 2^4, ... 342 = 7^3 - 1^2, ...
CROSSREFS
Subsequence of A016825 (see second comment of Don Reble).
n such that A076427(n) = 0. [Corrected by Jonathan Sondow, Apr 14 2014]
For a count of the representations of a number as the difference of two perfect powers, see A076427. The numbers that appear to have unique representations are listed in A076438.
Sequence in context: A078836 A340735 A142875 * A066510 A279730 A269717
KEYWORD
nonn,hard
AUTHOR
Zak Seidov, Oct 07 2002
EXTENSIONS
Corrected by Don Reble and Jud McCranie, Oct 08 2002. Corrections were also sent in by Neil Fernandez, David W. Wilson, and Reinhard Zumkeller.
STATUS
approved