[go: up one dir, main page]

login
A069136
Numbers that are not the sum of 5 nonnegative cubes.
1
6, 7, 13, 14, 15, 20, 21, 22, 23, 34, 39, 41, 42, 46, 47, 48, 49, 50, 53, 58, 60, 61, 69, 76, 77, 79, 84, 85, 86, 87, 95, 98, 102, 103, 104, 105, 106, 110, 111, 112, 113, 114, 117, 121, 122, 123, 124, 132, 139, 140, 147, 148, 151, 158, 159, 165
OFFSET
1,1
COMMENTS
Sequence is conjectured to be finite.
Comment from Richard C. Schroeppel, Sep 22 2010: It is conjectured that 7373170279850 is the largest number requiring more than four cubes (see Deshouillers et al.).
REFERENCES
Bohman, Jan and Froberg, Carl-Erik; Numerical investigation of Waring's problem for cubes, Nordisk Tidskr. Informationsbehandling (BIT) 21 (1981), 118-122.
F. Romani, Computations concerning Waring's problem, Calcolo, 19 (1982), 415-431.
LINKS
Jean-Marc Deshouillers, Francois Hennecart and Bernard Landreau; appendix by I. Gusti Putu Purnaba, 7373170279850, Math. Comp. 69 (2000), 421-439.
CROSSREFS
Sums of k cubes, number of ways of writing n as, for k=1..9: A010057, A173677, A051343, A173678, A173679, A173680, A173676, A173681, A173682.
Sequence in context: A109605 A331860 A069198 * A348368 A277137 A047335
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Apr 08 2002
STATUS
approved