[go: up one dir, main page]

login
A062059
Numbers with 9 odd integers in their Collatz (or 3x+1) trajectory.
8
33, 65, 66, 67, 130, 131, 132, 133, 134, 260, 261, 262, 264, 266, 268, 269, 273, 289, 520, 522, 524, 525, 528, 529, 532, 533, 536, 538, 546, 547, 555, 571, 577, 578, 579, 583, 633, 635, 1040, 1044, 1045, 1048, 1050, 1056, 1058, 1059, 1064, 1066, 1072, 1076, 1077
OFFSET
1,1
COMMENTS
The Collatz (or 3x+1) function is f(x) = x/2 if x is even, 3x+1 if x is odd.
The Collatz trajectory of n is obtained by applying f repeatedly to n until 1 is reached.
A078719(a(n)) = 9; A006667(a(n)) = 8.
REFERENCES
J. Shallit and D. Wilson, The "3x+1" Problem and Finite Automata, Bulletin of the EATCS #46 (1992) pp. 182-185.
LINKS
J. Shallit and D. Wilson, The "3x+1" Problem and Finite Automata, Bulletin of the EATCS #46 (1992) pp. 182-185.
Eric Weisstein's World of Mathematics, Collatz Problem
EXAMPLE
The Collatz trajectory of 33 is (33, 100, 50, 25, 76, 38, 19, 58, 29, 88, 44, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1), which contains 9 odd integers.
MATHEMATICA
Collatz[n_] := NestWhileList[If[EvenQ[#], #/2, 3 # + 1] &, n, # > 1 &]; countOdd[lst_] := Length[Select[lst, OddQ]]; Select[Range[1000], countOdd[Collatz[#]] == 9 &] (* T. D. Noe, Dec 03 2012 *)
PROG
(Haskell)
import Data.List (elemIndices)
a062059 n = a062059_list !! (n-1)
a062059_list = map (+ 1) $ elemIndices 9 a078719_list
-- Reinhard Zumkeller, Oct 08 2011
(Python)
def a(n):
l=[n, ]
while True:
if n%2==0: n//=2
else: n = 3*n + 1
if n not in l:
l+=[n, ]
if n<2: break
else: break
return len([i for i in l if i%2])
[n for n in range(30, 1101) if a(n)==9] # Indranil Ghosh, Apr 14 2017
CROSSREFS
KEYWORD
nonn
STATUS
approved