[go: up one dir, main page]

login
A059185
Engel expansion of Pi^2 = 9.8696...
1
1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 5, 9, 28, 45, 72, 111, 329, 415, 846, 1488, 5684, 1895742, 2890879, 5388452, 18083303, 30915293, 32699271, 38719784, 70637726, 118179186, 151342409, 995604288, 1839673662, 5342025157
OFFSET
1,10
COMMENTS
Cf. A006784 for definition of Engel expansion.
REFERENCES
F. Engel, Entwicklung der Zahlen nach Stammbruechen, Verhandlungen der 52. Versammlung deutscher Philologen und Schulmaenner in Marburg, 1913, pp. 190-191.
LINKS
G. C. Greubel and T. D. Noe, Table of n, a(n) for n = 1..1000 (terms 1 to 300 from T. D. Noe; terms 301 to 1000 from G. C. Greubel, Dec 27 2016)
F. Engel, Entwicklung der Zahlen nach Stammbruechen, Verhandlungen der 52. Versammlung deutscher Philologen und Schulmaenner in Marburg, 1913, pp. 190-191. English translation by Georg Fischer, included with his permission.
P. Erdős and Jeffrey Shallit, New bounds on the length of finite Pierce and Engel series, Sem. Theor. Nombres Bordeaux (2) 3 (1991), no. 1, 43-53.
MATHEMATICA
EngelExp[A_, n_] := Join[Array[1 &, Floor[A]], First@Transpose@
NestList[{Ceiling[1/Expand[#[[1]] #[[2]] - 1]], Expand[#[[1]] #[[2]] - 1]/1} &, {Ceiling[1/(A - Floor[A])], (A - Floor[A])/1}, n - 1]];
EngelExp[N[Pi^2, 7!], 100] (* modified by G. C. Greubel, Dec 27 2016 *)
CROSSREFS
Cf. A002388 (Pi^2).
Sequence in context: A302635 A302427 A303197 * A302309 A303040 A302877
KEYWORD
nonn,easy,nice
AUTHOR
STATUS
approved