[go: up one dir, main page]

login
A058282
Continued fraction for e^3.
4
20, 11, 1, 2, 4, 3, 1, 5, 1, 2, 16, 1, 1, 16, 2, 13, 14, 4, 6, 2, 1, 1, 2, 2, 2, 3, 5, 1, 3, 1, 1, 68, 7, 5, 1, 4, 2, 1, 1, 1, 1, 1, 1, 7, 3, 1, 6, 1, 2, 5, 4, 7, 2, 1, 3, 2, 2, 1, 2, 1, 4, 1, 1, 13, 1, 1, 2, 1, 1, 1, 1, 3, 7, 11, 18, 54, 1, 2, 2, 2, 1, 1, 6, 2, 2, 46, 2, 189, 1, 24, 1, 8, 13, 4, 1, 1
OFFSET
0,1
LINKS
K. Matthews, Finding the continued fraction of e^(l/m) ["... there is no known formula for the partial quotients of the continued fraction expansion of e^3, or more generally e^(l/m) with l distinct from 1,2 and gcd(l,m)=1..."]
G. Xiao, Contfrac
EXAMPLE
20.085536923187667740928529... = 20 + 1/(11 + 1/(1 + 1/(2 + 1/(4 + ...)))). - Harry J. Smith, Apr 30 2009
MAPLE
with(numtheory); Digits:=200: cf:=convert(evalf( exp(3)), confrac); # N. J. A. Sloane, Sep 05 2012
MATHEMATICA
ContinuedFraction[ E^3, 100]
PROG
(PARI) contfrac(exp(1)^3)
(PARI) { allocatemem(932245000); default(realprecision, 21000); x=contfrac(exp(3)); for (n=1, 20001, write("b058282.txt", n-1, " ", x[n])); } \\ Harry J. Smith, Apr 30 2009
CROSSREFS
KEYWORD
cofr,nonn,easy
AUTHOR
Robert G. Wilson v, Dec 07 2000
EXTENSIONS
More terms from Jason Earls, Jul 10 2001
STATUS
approved