[go: up one dir, main page]

login
A058281
Continued fraction for square root of e.
10
1, 1, 1, 1, 5, 1, 1, 9, 1, 1, 13, 1, 1, 17, 1, 1, 21, 1, 1, 25, 1, 1, 29, 1, 1, 33, 1, 1, 37, 1, 1, 41, 1, 1, 45, 1, 1, 49, 1, 1, 53, 1, 1, 57, 1, 1, 61, 1, 1, 65, 1, 1, 69, 1, 1, 73, 1, 1, 77, 1, 1, 81, 1, 1, 85, 1, 1, 89, 1, 1, 93, 1, 1, 97, 1, 1, 101, 1, 1, 105, 1, 1, 109, 1, 1, 113, 1, 1
OFFSET
0,5
COMMENTS
sqrt(e) = 1.64872127070012814684865078781416357165377610071014801157507... - Harry J. Smith, May 01 2009
LINKS
D. H. Lehmer, Continued fractions containing arithmetic progressions, Scripta Mathematica, 29 (1973): 17-24. [Annotated copy of offprint]
T. J. Osler, A proof of the continued fraction expansion of e^(1/M), Amer. Math. Monthly, 113 (No. 1, 2006), 62-66.
G. Xiao, Contfrac
FORMULA
a(3k+1) = 4k+1, a(i) = 1 otherwise.
G.f.: -(x^2-x+1)*(x^3-2*x^2-2*x-1) / ((x-1)^2*(x^2+x+1)^2). - Colin Barker, Jun 24 2013
E.g.f.: exp(-x/2)*(exp(3*x/2)*(5 + 4*x) + (4 + 8*x)*cos(sqrt(3)*x/2) - 4*sqrt(3)*sin(sqrt(3)*x/2))/9. - Stefano Spezia, May 05 2022
EXAMPLE
sqrt(e) = 1 + 1/(1 + 1/(1 + 1/(1 + 1/(5 + ...)))). - Harry J. Smith, May 01 2009
MATHEMATICA
ContinuedFraction[ Sqrt[E], 100]
PROG
(PARI) contfrac(sqrt(exp(1)))
(PARI) { allocatemem(932245000); default(realprecision, 60000); x=contfrac(sqrt(exp(1))); for (n=1, 20001, write("b058281.txt", n-1, " ", x[n])); } \\ Harry J. Smith, May 01 2009
CROSSREFS
Cf. A019774 for decimal expansion of sqrt(e).
Sequence in context: A054110 A132048 A141398 * A046583 A046579 A153108
KEYWORD
cofr,nonn,easy,nice
AUTHOR
Robert G. Wilson v, Dec 07 2000
EXTENSIONS
More terms from Jason Earls, Jul 10 2001
STATUS
approved