[go: up one dir, main page]

login
A056210
Primes p whose period of reciprocal equals (p-1)/5.
13
11, 251, 1061, 1451, 1901, 1931, 2381, 3181, 3491, 3851, 4621, 4861, 5261, 6101, 6491, 6581, 6781, 7331, 8101, 9941, 10331, 10771, 11251, 11261, 11411, 12301, 14051, 14221, 14411, 15091, 15131, 16061, 16141, 16301, 16651, 16811, 16901
OFFSET
1,1
COMMENTS
Cyclic numbers of the fifth degree (or fifth order): the reciprocals of these numbers belong to one of five different cycles. Each cycle has the (number minus 1)/5 digits.
From Robert Israel, Apr 02 2018: (Start)
Primes p such that A002371(A000720(p)) = (p-1)/5.
All terms == 1 (mod 10). (End)
MAPLE
select(t -> isprime(t) and numtheory:-order(10, t) = (t-1)/5, [seq(t, t=11..17000, 10)]); # Robert Israel, Apr 02 2018
MATHEMATICA
f[n_Integer] := Block[{ds = Divisors[n - 1]}, (n - 1)/Take[ ds, Position[ PowerMod[ 10, ds, n], 1] [[1, 1]]] [[ -1]]]; Select[ Prime[ Range[4, 2000]], f[ # ] == 5 &]
KEYWORD
nonn,base
AUTHOR
Robert G. Wilson v, Aug 02 2000
EXTENSIONS
Entry revised by N. J. A. Sloane, Apr 30 2007
STATUS
approved