[go: up one dir, main page]

login
A054890
Layer counting sequence for hyperbolic tessellation by regular heptagons of angle Pi/3.
3
1, 7, 42, 245, 1428, 8323, 48510, 282737, 1647912, 9604735, 55980498, 326278253, 1901689020, 11083855867, 64601446182, 376524821225, 2194547481168, 12790760065783, 74550012913530, 434509317415397
OFFSET
1,2
COMMENTS
The layer sequence is the sequence of the cardinalities of the layers accumulating around a (finite-sided) polygon of the tessellation under successive side-reflections; see the illustration accompanying A054888.
LINKS
Hacène Belbachir, Soumeya Merwa Tebtoub, and László Németh, Ellipse Chains and Associated Sequences, J. Int. Seq., Vol. 23 (2020), Article 20.8.5.
Index entries for Coordination Sequences [A layer sequence is a kind of coordination sequence. - N. J. A. Sloane, Nov 20 2022]
FORMULA
a(n) = 7*A001109(n-1) + [n=1].
G.f.: x*(1+x+x^2)/(1-6*x+x^2).
a(n) = A001109(n) + A001109(n-1) + A001109(n-2), n>1. - Ralf Stephan, Apr 26 2003
MATHEMATICA
Rest@CoefficientList[Series[x*(1+x+x^2)/(1-6*x+x^2), {x, 0, 30}], x] (* Michael De Vlieger, Dec 29 2020 *)
LinearRecurrence[{6, -1}, {1, 7, 42}, 20] (* Harvey P. Dale, Jun 06 2021 *)
PROG
(Magma) [n eq 1 select 1 else 7*Evaluate(ChebyshevSecond(n-1), 3): n in [1..40]]; // G. C. Greubel, Feb 08 2023
(SageMath) [7*chebyshev_U(n-2, 3) + int(n==1) for n in range(1, 41)] # G. C. Greubel, Feb 08 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Paolo Dominici (pl.dm(AT)libero.it), May 23 2000
STATUS
approved