[go: up one dir, main page]

login
A053128
Binomial coefficients C(2*n-5,6).
7
7, 84, 462, 1716, 5005, 12376, 27132, 54264, 100947, 177100, 296010, 475020, 736281, 1107568, 1623160, 2324784, 3262623, 4496388, 6096454, 8145060, 10737573, 13983816, 18009460, 22957480, 28989675, 36288252, 45057474, 55525372, 67945521, 82598880, 99795696
OFFSET
6,1
COMMENTS
a(n) = A053123(n,6), n >= 6; a(n) = 0, n=0..5, (seventh column of shifted Chebyshev's S-triangle, decreasing order).
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings).
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
Milan Janjić, Two Enumerative Functions, University of Banja Luka (Bosnia and Herzegovina, 2017).
Ângela Mestre and José Agapito, Square Matrices Generated by Sequences of Riordan Arrays, J. Int. Seq., Vol. 22 (2019), Article 19.8.4.
FORMULA
a(n) = binomial(2*n-5, 6) if n >= 6 else 0.
G.f.: (7+35*x+21*x^2+x^3)/(1-x)^7.
E.g.f.: (18900 - 16380*x + 6975*x^2 - 1935*x^3 + 390*x^4 - 60*x^5 + 8*x^6)*exp(x)/90. - G. C. Greubel, Aug 26 2018
a(n) = (n-5)*(n-4)*(n-3)*(2*n-9)*(2*n-7)*(2*n-5)/90. - Wesley Ivan Hurt, Mar 25 2020
From Amiram Eldar, Oct 21 2022: (Start)
Sum_{n>=6} 1/a(n) = 667/10 - 96*log(2).
Sum_{n>=6} (-1)^n/a(n) = 273/10 - 6*Pi - 12*log(2). (End)
MATHEMATICA
Table[Binomial[2*n-5, 6], {n, 6, 50}] (* G. C. Greubel, Aug 26 2018 *)
PROG
(Magma) [Binomial(2*n-5, 6): n in [6..40]]; // Vincenzo Librandi, Oct 07 2011
(PARI) for(n=6, 50, print1(binomial(2*n-5, 6), ", ")) \\ G. C. Greubel, Aug 26 2018
CROSSREFS
Sequence in context: A187649 A368853 A316377 * A027819 A269895 A272496
KEYWORD
nonn,easy
STATUS
approved