[go: up one dir, main page]

login
A048878
Generalized Pellian with second term of 9.
4
1, 9, 37, 157, 665, 2817, 11933, 50549, 214129, 907065, 3842389, 16276621, 68948873, 292072113, 1237237325, 5241021413, 22201322977, 94046313321, 398386576261, 1687592618365, 7148757049721, 30282620817249, 128279240318717, 543399582092117, 2301877568687185
OFFSET
0,2
FORMULA
a(n) = ( (7+sqrt(5))(2+sqrt(5))^n - (7-sqrt(5))(2-sqrt(5))^n )/2*sqrt(5).
G.f.: (1+5*x)/(1-4*x-x^2). - Philippe Deléham, Nov 03 2008
a(n) = F(3*n+3) + F(3*n-2); F = A000045. - Yomna Bakr and Greg Dresden, May 25 2024
EXAMPLE
a(n) = 4a(n-1) + a(n-2); a(0)=1, a(1)=9.
MAPLE
with(combinat): a:=n->5*fibonacci(n-1, 4)+fibonacci(n, 4): seq(a(n), n=1..16); # Zerinvary Lajos, Apr 04 2008
MATHEMATICA
LinearRecurrence[{4, 1}, {1, 9}, 31] (* or *) CoefficientList[ Series[ (1+5x)/(1-4x-x^2), {x, 0, 30}], x] (* Harvey P. Dale, Jul 12 2011 *)
PROG
(PARI) { default(realprecision, 2000); for (n=0, 2000, a=round(((7+sqrt(5))*(2+sqrt(5))^n - (7-sqrt(5))*(2-sqrt(5))^n )/10*sqrt(5)); if (a > 10^(10^3 - 6), break); write("b048878.txt", n, " ", a); ); } \\ Harry J. Smith, May 31 2009
CROSSREFS
KEYWORD
nonn,easy,nice
STATUS
approved