[go: up one dir, main page]

login
A048724
Write n and 2n in binary and add them mod 2.
60
0, 3, 6, 5, 12, 15, 10, 9, 24, 27, 30, 29, 20, 23, 18, 17, 48, 51, 54, 53, 60, 63, 58, 57, 40, 43, 46, 45, 36, 39, 34, 33, 96, 99, 102, 101, 108, 111, 106, 105, 120, 123, 126, 125, 116, 119, 114, 113, 80, 83, 86, 85, 92, 95, 90, 89, 72, 75, 78, 77, 68, 71, 66, 65, 192
OFFSET
0,2
COMMENTS
Reversing binary representation of -n. Converting sum of powers of 2 in binary representation of a(n) to alternating sum gives -n. Note that the alternation is applied only to the nonzero bits and does not depend on the exponent of two. All integers have a unique reversing binary representation (see cited exercise for proof). Complement of A065621. - Marc LeBrun, Nov 07 2001
A permutation of the "evil" numbers A001969. - Marc LeBrun, Nov 07 2001
A048725(n) = a(a(n)). - Reinhard Zumkeller, Nov 12 2004
REFERENCES
D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, 1969, Vol. 2, p. 178, (exercise 4.1. Nr. 27)
LINKS
P. Mathonet, M. Rigo, M. Stipulanti and N. Zénaïdi, On digital sequences associated with Pascal's triangle, arXiv:2201.06636 [math.NT], 2022.
FORMULA
a(n) = Xmult(n, 3) (or n XOR (n<<1)).
a(n) = A065621(-n).
a(2n) = 2a(n), a(2n+1) = 2a(n) + 2(-1)^n + 1.
G.f. 1/(1-x) * sum(k>=0, 2^k*(3t-t^3)/(1+t)/(1+t^2), t=x^2^k). - Ralf Stephan, Sep 08 2003
a(n) = sum(k=0, n, (1-(-1)^round(+n/2^k))/2*2^k). - Benoit Cloitre, Apr 27 2005
a(n) = A001969(A003188(n)). - Philippe Deléham, Apr 29 2005
a(n) = A106409(2*n) for n>0. - Reinhard Zumkeller, May 02 2005
a(n) = A142149(2*n). - Reinhard Zumkeller, Jul 15 2008
EXAMPLE
12 = 1100 in binary, 24=11000 and their sum is 10100=20, so a(12)=20.
a(4) = 12 = + 8 + 4 -> - 8 + 4 = -4.
MAPLE
a:= n-> Bits[Xor](n, n+n):
seq(a(n), n=0..100); # Alois P. Heinz, Apr 06 2016
MATHEMATICA
Table[ BitXor[2n, n], {n, 0, 65}] (* Robert G. Wilson v, Jul 06 2006 *)
PROG
(PARI) a(n)=bitxor(n, 2*n) \\ Charles R Greathouse IV, Jan 04 2013
(Haskell)
import Data.Bits (xor, shiftL)
a048724 n = n `xor` shiftL n 1 :: Integer
-- Reinhard Zumkeller, Mar 06 2013
(Python)
def A048724(n): return n^(n<<1) # Chai Wah Wu, Apr 05 2021
CROSSREFS
Bisection of A003188 (even part).
See also A065620, A065621.
Cf. A242399.
Sequence in context: A246979 A246980 A095359 * A292682 A334748 A334079
KEYWORD
nonn,nice,look,easy,base,changed
AUTHOR
Antti Karttunen, Apr 26 1999
STATUS
approved