[go: up one dir, main page]

login
A048719
Binary expansion matches ((0)*0011)*(0*).
7
0, 3, 6, 12, 24, 48, 51, 96, 99, 102, 192, 195, 198, 204, 384, 387, 390, 396, 408, 768, 771, 774, 780, 792, 816, 819, 1536, 1539, 1542, 1548, 1560, 1584, 1587, 1632, 1635, 1638, 3072, 3075, 3078, 3084, 3096
OFFSET
0,2
COMMENTS
1-bits occur only in pairs, separated from other such pairs by at least two 0-bits.
All terms satisfy both A048727(n) = 3*n and A048725(n) = 5*n.
FORMULA
a(n) = 3*A048718(n).
MATHEMATICA
filterQ[n_] := With[{bb = IntegerDigits[n, 2]}, !MatchQ[bb, {1}|{1, 0, ___}|{___, 0, 1}|{___, 0, 1, 0, ___}|{___, 1, 1, 1, ___}|{___, 1, 0, 1, ___}]];
Select[Range[0, 3096], filterQ] (* Jean-François Alcover, Dec 31 2020 *)
PROG
(PARI) is(n)=n%3==0 && !bitand(n/3, 14*n/3) \\ Charles R Greathouse IV, Oct 03 2016
CROSSREFS
Intersection of A048716 and A048717.
Sequence in context: A137711 A068032 A293341 * A115807 A366277 A322676
KEYWORD
nonn,base,easy
AUTHOR
Antti Karttunen, Mar 30 1999
STATUS
approved