[go: up one dir, main page]

login
A047379
Numbers that are congruent to {0, 2, 4, 5} mod 7.
2
0, 2, 4, 5, 7, 9, 11, 12, 14, 16, 18, 19, 21, 23, 25, 26, 28, 30, 32, 33, 35, 37, 39, 40, 42, 44, 46, 47, 49, 51, 53, 54, 56, 58, 60, 61, 63, 65, 67, 68, 70, 72, 74, 75, 77, 79, 81, 82, 84, 86, 88, 89, 91, 93, 95, 96
OFFSET
1,2
FORMULA
a(n) = floor(floor((7n + 2)/2)/2).
a(n) = floor((7n-5)/4). - Gary Detlefs, Mar 07 2010
G.f.: x^2*(2+2*x+x^2+2*x^3) / ( (1+x)*(x^2+1)*(x-1)^2 ). - R. J. Mathar, Dec 04 2011
From Wesley Ivan Hurt, Dec 03 2014: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5), n>5;
a(n) = (14*n-13-(-1)^n+2*i^n*(-1)^((3+(-1)^n)/4))/8, where i = sqrt(-1);
a(n) = A047215(n-1) - A057353(n-1). (End)
MAPLE
A047379:=n->floor((7*n-5)/4): seq(A047379(n), n=1..100); # Wesley Ivan Hurt, Dec 03 2014
MATHEMATICA
Select[Range[0, 100], MemberQ[{0, 2, 4, 5}, Mod[#, 7]]&] (* Harvey P. Dale, Apr 10 2014 *)
PROG
(Magma) [Floor((7*n-5)/4) : n in [1..100]]; // Wesley Ivan Hurt, Dec 03 2014
CROSSREFS
Sequence in context: A169581 A184858 A083026 * A093848 A049039 A325101
KEYWORD
nonn,easy
STATUS
approved