[go: up one dir, main page]

login
A047376
Numbers that are congruent to {1, 4, 5} mod 7.
1
1, 4, 5, 8, 11, 12, 15, 18, 19, 22, 25, 26, 29, 32, 33, 36, 39, 40, 43, 46, 47, 50, 53, 54, 57, 60, 61, 64, 67, 68, 71, 74, 75, 78, 81, 82, 85, 88, 89, 92, 95, 96, 99, 102, 103, 106, 109, 110, 113, 116, 117, 120, 123, 124, 127, 130, 131, 134, 137, 138, 141
OFFSET
1,2
FORMULA
G.f.: x*(1+3*x+x^2+2*x^3) / ((1+x+x^2)*(x-1)^2). - R. J. Mathar, Dec 04 2011
From Wesley Ivan Hurt, Jun 09 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(n) = (21*n-12-6*cos(2*n*Pi/3)-2*sqrt(3)*sin(2*n*Pi/3))/9.
a(3k) = 7k-2, a(3k-1) = 7k-3, a(3k-2) = 7k-6. (End)
MAPLE
A047376:=n->(21*n-12-6*cos(2*n*Pi/3)-2*sqrt(3)*sin(2*n*Pi/3))/9: seq(A047376(n), n=1..100); # Wesley Ivan Hurt, Jun 09 2016
MATHEMATICA
Select[Range[200], MemberQ[{1, 4, 5}, Mod[#, 7]]&] (* Harvey P. Dale, Feb 24 2011 *)
PROG
(Magma) [n : n in [0..150] | n mod 7 in [1, 4, 5]]; // Wesley Ivan Hurt, Jun 09 2016
CROSSREFS
Sequence in context: A050140 A190860 A191214 * A260989 A285566 A353044
KEYWORD
nonn,easy
STATUS
approved