[go: up one dir, main page]

login
A047365
Numbers that are congruent to {0, 3, 4, 5} mod 7.
1
0, 3, 4, 5, 7, 10, 11, 12, 14, 17, 18, 19, 21, 24, 25, 26, 28, 31, 32, 33, 35, 38, 39, 40, 42, 45, 46, 47, 49, 52, 53, 54, 56, 59, 60, 61, 63, 66, 67, 68, 70, 73, 74, 75, 77, 80, 81, 82, 84, 87, 88, 89, 91, 94, 95, 96, 98, 101, 102, 103, 105, 108, 109, 110
OFFSET
1,2
FORMULA
G.f.: x^2*(3+x+x^2+2*x^3) / ( (1+x)*(x^2+1)*(x-1)^2 ). - R. J. Mathar, Dec 04 2011
a(1)=0, a(2)=3, a(3)=4, a(4)=5, a(5)=7, a(n)=a(n-1)+a(n-4)-a(n-5) for n>5. - Harvey P. Dale, May 26 2012
From Wesley Ivan Hurt, Jun 04 2016: (Start)
a(n) = (14*n-11+i^(2*n)-(3+i)*i^(-n)-(3-i)*i^n)/8 where i=sqrt(-1).
a(2k) = A047389(k), a(2k-1) = A047345(k). (End)
MAPLE
A047365:=n->(14*n-11+I^(2*n)-(3+I)*I^(-n)-(3-I)*I^n)/8: seq(A047365(n), n=1..100); # Wesley Ivan Hurt, Jun 04 2016
MATHEMATICA
Select[Range[0, 100], MemberQ[{0, 3, 4, 5}, Mod[#, 7]]&] (* or *) LinearRecurrence[{1, 0, 0, 1, -1}, {0, 3, 4, 5, 7}, 60] (* Harvey P. Dale, May 26 2012 *)
PROG
(Magma) [n : n in [0..150] | n mod 7 in [0, 3, 4, 5]]; // Wesley Ivan Hurt, Jun 04 2016
CROSSREFS
Sequence in context: A105148 A370862 A072556 * A353448 A048342 A159560
KEYWORD
nonn,easy
STATUS
approved