[go: up one dir, main page]

login
A047321
Numbers that are congruent to {1, 5, 6} mod 7.
1
1, 5, 6, 8, 12, 13, 15, 19, 20, 22, 26, 27, 29, 33, 34, 36, 40, 41, 43, 47, 48, 50, 54, 55, 57, 61, 62, 64, 68, 69, 71, 75, 76, 78, 82, 83, 85, 89, 90, 92, 96, 97, 99, 103, 104, 106, 110, 111, 113, 117, 118, 120, 124, 125, 127, 131, 132, 134, 138, 139, 141
OFFSET
1,2
FORMULA
G.f.: x*(1+4*x+x^2+x^3)/((1+x+x^2)*(x-1)^2). - R. J. Mathar, Dec 03 2011
From Wesley Ivan Hurt, Jun 07 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(n) = (21*n-6-3*cos(2*n*Pi/3)-5*sqrt(3)*sin(2*n*Pi/3))/9.
a(3k) = 7k-1, a(3k-1) = 7k-2, a(3k-2) = 7k-6. (End)
MAPLE
A047321:=n->(21*n-6-3*cos(2*n*Pi/3)-5*sqrt(3)*sin(2*n*Pi/3))/9: seq(A047321(n), n=1..100); # Wesley Ivan Hurt, Jun 07 2016
MATHEMATICA
Select[Range[0, 150], MemberQ[{1, 5, 6}, Mod[#, 7]] &] (* Wesley Ivan Hurt, Jun 07 2016 *)
PROG
(Magma) [n : n in [0..150] | n mod 7 in [1, 5, 6]]; // Wesley Ivan Hurt, Jun 07 2016
CROSSREFS
Sequence in context: A030742 A048583 A169622 * A033158 A193569 A032721
KEYWORD
nonn,easy
STATUS
approved