[go: up one dir, main page]

login
A047318
Numbers that are congruent to {0, 1, 2, 4, 5, 6} mod 7.
2
0, 1, 2, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 32, 33, 34, 35, 36, 37, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 65, 67, 68, 69, 70, 71, 72, 74, 75, 76, 77, 78, 79, 81, 82, 83
OFFSET
1,3
COMMENTS
Complement of A017017. - Michel Marcus, Sep 10 2015
FORMULA
G.f.: x^2*(1+x+2*x^2+x^3+x^4+x^5) / ( (1+x)*(1+x+x^2)*(x^2-x+1)*(x-1)^2 ). - R. J. Mathar, Dec 03 2011
From Wesley Ivan Hurt, Sep 10 2015: (Start)
a(n) = a(n-1) + a(n-6) - a(n-7) for n>7.
a(n) = n + floor((n-4)/6). (End)
From Wesley Ivan Hurt, Jun 15 2016: (Start)
a(n) = (42*n-39+3*cos(n*Pi)-4*sqrt(3)*cos((1+4*n)*Pi/6)+12*sin((1-2*n)*Pi/6))/36.
a(6k) = 7k-1, a(6k-1) = 7k-2, a(6k-2) = 7k-3, a(6k-3) = 7k-5, a(6k-4) = 7k-6, a(6k-5) = 7k-7. (End)
MAPLE
for n from 0 to 200 do if n mod 7 <> 3 then printf(`%d, `, n) fi: od:
A047318:=n->n+floor((n-4)/6): seq(A047318(n), n=1..100); # Wesley Ivan Hurt, Sep 10 2015
MATHEMATICA
Table[n+Floor[(n-4)/6], {n, 100}] (* Wesley Ivan Hurt, Sep 10 2015 *)
LinearRecurrence[{1, 0, 0, 0, 0, 1, -1}, {0, 1, 2, 4, 5, 6, 7}, 100] (* Vincenzo Librandi, Sep 11 2015 *)
DeleteCases[Range[0, 100], _?(Mod[#, 7]==3&)] (* Harvey P. Dale, May 07 2016 *)
PROG
(Magma) [n+Floor((n-4)/6) : n in [1..100]]; // Wesley Ivan Hurt, Sep 10 2015
(Magma) [n : n in [0..140] | n mod 7 in [0, 1, 2, 4, 5, 6]]; // Vincenzo Librandi, Sep 11 2015
CROSSREFS
Cf. A017017.
Sequence in context: A294662 A183301 A308065 * A057904 A188397 A027925
KEYWORD
nonn,easy
EXTENSIONS
More terms from James A. Sellers, Feb 19 2001
STATUS
approved