[go: up one dir, main page]

login
A047311
Numbers that are congruent to {4, 5, 6} mod 7.
1
4, 5, 6, 11, 12, 13, 18, 19, 20, 25, 26, 27, 32, 33, 34, 39, 40, 41, 46, 47, 48, 53, 54, 55, 60, 61, 62, 67, 68, 69, 74, 75, 76, 81, 82, 83, 88, 89, 90, 95, 96, 97, 102, 103, 104, 109, 110, 111, 116, 117, 118, 123, 124, 125, 130, 131, 132, 137, 138, 139, 144
OFFSET
1,1
FORMULA
G.f.: x*(4+x+x^2+x^3) / ((1+x+x^2)*(x-1)^2). - R. J. Mathar, Oct 25 2011
From Wesley Ivan Hurt, Jun 07 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(n) = (21*n+3-12*cos(2*n*Pi/3)+4*sqrt(3)*sin(2*n*Pi/3))/9.
a(3k) = 7k-1, a(3k-1) = 7k-2, a(3k-2) = 7k-3. (End)
MAPLE
A047311:=n->(21*n+3-12*cos(2*n*Pi/3)+4*sqrt(3)*sin(2*n*Pi/3))/9: seq(A047311(n), n=1..100); # Wesley Ivan Hurt, Jun 07 2016
MATHEMATICA
LinearRecurrence[{1, 0, 1, -1}, {4, 5, 6, 11}, 60] (* Harvey P. Dale, Oct 29 2014 *)
PROG
(Magma) [n : n in [0..150] | n mod 7 in [4..6]]; // Wesley Ivan Hurt, Jun 07 2016
CROSSREFS
Sequence in context: A162415 A007606 A284513 * A224081 A347269 A316783
KEYWORD
nonn,easy
STATUS
approved