[go: up one dir, main page]

login
A047306
Numbers that are congruent to {0, 2, 3, 4, 5, 6} mod 7.
2
0, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 72, 73, 74, 75, 76, 77
OFFSET
1,2
COMMENTS
Complement of A016993. - Michel Marcus, Sep 10 2015
FORMULA
G.f.: x^2*(2+x+x^2+x^3+x^4+x^5) / ( (1+x)*(1+x+x^2)*(x^2-x+1)*(x-1)^2 ). - R. J. Mathar, Oct 25 2011
From Wesley Ivan Hurt, Sep 10 2015: (Start)
a(n) = a(n-1) + a(n-6) - a(n-7) for n>7.
a(n) = n + floor((n-2)/6). (End)
From Wesley Ivan Hurt, Jun 15 2016: (Start)
a(n) = (42*n-27+3*cos(n*Pi)-12*cos(n*Pi/3)-4*sqrt(3)*sin(2*n*Pi/3))/36.
a(6k) = 7k-1, a(6k-1) = 7k-2, a(6k-2) = 7k-3, a(6k-3) = 7k-4, a(6k-4) = 7k-5, a(6k-5) = 7k-7. (End)
MAPLE
A047306:=n->n+floor((n-2)/6): seq(A047306(n), n=1..100); # Wesley Ivan Hurt, Sep 10 2015
MATHEMATICA
Select[Range[0, 100], MemberQ[{0, 2, 3, 4, 5, 6}, Mod[#, 7]] &] (* Vincenzo Librandi, Oct 22 2014 *)
LinearRecurrence[{1, 0, 0, 0, 0, 1, -1}, {0, 2, 3, 4, 5, 6, 7}, 70] (* Harvey P. Dale, May 28 2018 *)
PROG
(PARI) concat(0, Vec(x^2*(2+x+x^2+x^3+x^4+x^5)/((1+x)*(1+x+x^2)*(x^2-x+1)*(x-1)^2) + O(x^30))) \\ Michel Marcus, Oct 22 2014
(Magma) [n: n in [0..100] | n mod 7 in [0] cat [2..6]]; // Vincenzo Librandi, Oct 22 2014
CROSSREFS
Cf. A016993.
Sequence in context: A091249 A154799 A020660 * A332108 A316228 A353935
KEYWORD
nonn,easy
EXTENSIONS
More terms from Michel Marcus, Oct 22 2014
STATUS
approved