[go: up one dir, main page]

login
A047296
Numbers that are congruent to {3, 4, 6} mod 7.
1
3, 4, 6, 10, 11, 13, 17, 18, 20, 24, 25, 27, 31, 32, 34, 38, 39, 41, 45, 46, 48, 52, 53, 55, 59, 60, 62, 66, 67, 69, 73, 74, 76, 80, 81, 83, 87, 88, 90, 94, 95, 97, 101, 102, 104, 108, 109, 111, 115, 116, 118, 122, 123, 125, 129, 130, 132, 136, 137, 139, 143
OFFSET
1,1
FORMULA
G.f.: x*(3+x+2*x^2+x^3) / ( (1+x+x^2)*(x-1)^2 ). - R. J. Mathar, Oct 25 2011
From Wesley Ivan Hurt, Jun 07 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(n) = (21*n-3-6*cos(2*n*Pi/3)+4*sqrt(3)*sin(2*n*Pi/3))/9.
a(3k) = 7k-1, a(3k-1) = 7k-3, a(3k-2) = 7k-4. (End)
MAPLE
A047296:=n->(21*n-3-6*cos(2*n*Pi/3)+4*sqrt(3)*sin(2*n*Pi/3))/9: seq(A047296(n), n=1..100); # Wesley Ivan Hurt, Jun 07 2016
MATHEMATICA
LinearRecurrence[{1, 0, 1, -1}, {3, 4, 6, 10}, 60] (* Harvey P. Dale, Apr 27 2015 *)
PROG
(Magma) [n : n in [1..150] | n mod 7 in [3, 4, 6]]; // Wesley Ivan Hurt, Jun 07 2016
CROSSREFS
Sequence in context: A079325 A284528 A176865 * A374901 A368059 A301759
KEYWORD
nonn,easy
STATUS
approved