OFFSET
1,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).
FORMULA
G.f.: x^2*(2+x+3*x^2+x^3) / ( (1+x)*(1+x^2)*(x-1)^2 ). - R. J. Mathar, Oct 25 2011
From Wesley Ivan Hurt, Jun 02 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = (14*n-13+3*i^(2*n)+(1+i)*i^(-n)+(1-i)*i^n)/8 where i=sqrt(-1).
MAPLE
A047285:=n->(14*n-13+3*I^(2*n)+(1+I)*I^(-n)+(1-I)*I^n)/8: seq(A047285(n), n=1..100); # Wesley Ivan Hurt, Jun 02 2016
MATHEMATICA
Table[(14n-13+3*I^(2n)+(1+I)*I^(-n)+(1-I)*I^n)/8, {n, 80}] (* Wesley Ivan Hurt, Jun 02 2016 *)
Select[Range[0, 120], MemberQ[{0, 2, 3, 6}, Mod[#, 7]]&] (* or *) LinearRecurrence[ {1, 0, 0, 1, -1}, {0, 2, 3, 6, 7}, 100] (* Harvey P. Dale, Jul 12 2020 *)
PROG
(Magma) [n : n in [0..150] | n mod 7 in [0, 2, 3, 6]]; // Wesley Ivan Hurt, Jun 02 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved