[go: up one dir, main page]

login
A047277
Numbers that are congruent to {0, 2, 6} mod 7.
1
0, 2, 6, 7, 9, 13, 14, 16, 20, 21, 23, 27, 28, 30, 34, 35, 37, 41, 42, 44, 48, 49, 51, 55, 56, 58, 62, 63, 65, 69, 70, 72, 76, 77, 79, 83, 84, 86, 90, 91, 93, 97, 98, 100, 104, 105, 107, 111, 112, 114, 118, 119, 121, 125, 126, 128, 132, 133, 135, 139, 140
OFFSET
1,2
FORMULA
G.f.: x^2*(2+4*x+x^2) / ((1+x+x^2)*(x-1)^2). - R. J. Mathar, Oct 25 2011
From Wesley Ivan Hurt, Jun 07 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(n) = 7*n/3-2+cos(2*n*Pi/3)+sin(2*n*Pi/3)/(3*sqrt(3)).
a(3k) = 7k-1, a(3k-1) = 7k-5, a(3k-2) = 7k-7. (End)
MAPLE
A047277:=n->7*n/3-2+cos(2*n*Pi/3)+sin(2*n*Pi/3)/(3*sqrt(3)): seq(A047277(n), n=1..100); # Wesley Ivan Hurt, Jun 07 2016
MATHEMATICA
Table[7*n/3-2+Cos[2*n*Pi/3]+Sin[2*n*Pi/3]/(3*Sqrt[3]), {n, 80}] (* Wesley Ivan Hurt, Jun 07 2016 *)
PROG
(Magma) [n : n in [0..150] | n mod 7 in [0, 2, 6]]; // Wesley Ivan Hurt, Jun 07 2016
CROSSREFS
Sequence in context: A020898 A184779 A200926 * A308198 A358579 A341437
KEYWORD
nonn,easy
STATUS
approved