[go: up one dir, main page]

login
A047269
Numbers that are congruent to {0, 1, 2, 5} mod 6.
2
0, 1, 2, 5, 6, 7, 8, 11, 12, 13, 14, 17, 18, 19, 20, 23, 24, 25, 26, 29, 30, 31, 32, 35, 36, 37, 38, 41, 42, 43, 44, 47, 48, 49, 50, 53, 54, 55, 56, 59, 60, 61, 62, 65, 66, 67, 68, 71, 72, 73, 74, 77, 78, 79, 80, 83, 84, 85, 86, 89, 90, 91, 92, 95, 96, 97
OFFSET
1,3
FORMULA
From Colin Barker, May 14 2012: (Start)
a(n) = (-7+(-1)^n+(1+i)*(-i)^n+(1-i)*i^n+6*n)/4 where i=sqrt(-1).
G.f.: x^2*(1+x+3*x^2+x^3)/((1-x)^2*(1+x)*(1+x^2)). (End)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5. - Vincenzo Librandi, May 15 2012
a(2n) = A007310(n), a(2n-1) = A047238(n). - Wesley Ivan Hurt, May 22 2016
Sum_{n>=2} (-1)^n/a(n) = log(3)/4 + 2*log(2)/3 - sqrt(3)*Pi/36. - Amiram Eldar, Dec 16 2021
MAPLE
A047269:=n->(-7+(-1)^n+(1+I)*(-I)^n+(1-I)*I^n+6*n)/4: seq(A047269(n), n=1..100); # Wesley Ivan Hurt, May 22 2016
MATHEMATICA
Select[Range[0, 4000], MemberQ[{0, 1, 2, 5}, Mod[#, 6]]&] (* Vincenzo Librandi, May 15 2012 *)
LinearRecurrence[{1, 0, 0, 1, -1}, {0, 1, 2, 5, 6}, 80] (* Harvey P. Dale, Jun 21 2022 *)
PROG
(Magma) I:=[0, 1, 2, 5, 6]; [n le 5 select I[n] else Self(n-1)+Self(n-4)-Self(n-5): n in [1..70]]; // Vincenzo Librandi, May 15 2012
(PARI) x='x+O('x^100); concat(0, Vec(x^2*(1+x+3*x^2+x^3)/((1-x)^2*(1+x)*(1+x^2)))) \\ Altug Alkan, Dec 24 2015
CROSSREFS
Sequence in context: A050007 A047579 A028726 * A039027 A129816 A137708
KEYWORD
nonn,easy
STATUS
approved