[go: up one dir, main page]

login
A047206
Numbers that are congruent to {1, 3, 4} mod 5.
24
1, 3, 4, 6, 8, 9, 11, 13, 14, 16, 18, 19, 21, 23, 24, 26, 28, 29, 31, 33, 34, 36, 38, 39, 41, 43, 44, 46, 48, 49, 51, 53, 54, 56, 58, 59, 61, 63, 64, 66, 68, 69, 71, 73, 74, 76, 78, 79, 81, 83, 84, 86, 88, 89, 91, 93, 94, 96, 98, 99, 101, 103, 104, 106, 108
OFFSET
1,2
FORMULA
G.f.: x*(1+2*x+x^2+x^3)/((1-x)^2*(1+x+x^2)).
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(n) = 1+(5*n)/3-(i*sqrt(3) * (-1/2+(i*sqrt(3))/2)^n)/9+(i*sqrt(3)* (-1/2-(i*sqrt(3))/2)^n)/9. - Stephen Crowley, Feb 11 2007
a(n) = floor((5*n-1)/3). - Gary Detlefs, May 14 2011
From Wesley Ivan Hurt, Jun 14 2016: (Start)
a(n) = (15*n-6-3*cos(2*n*Pi/3)-sqrt(3)*sin(2*n*Pi/3))/9.
a(3k) = 5k-1, a(3k-1) = 5k-2, a(3k-2) = 5k-4. (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = sqrt((5-sqrt(5))/2)*Pi/5 + log(phi)/sqrt(5) - log(2)/5, where phi is the golden ratio (A001622). - Amiram Eldar, Apr 16 2023
E.g.f.: (9 + 3*exp(x)*(5*x - 2) - exp(-x/2)*(3*cos(sqrt(3)*x/2) + sqrt(3)*sin(sqrt(3)*x/2)))/9. - Stefano Spezia, Jun 22 2024
MAPLE
A047206:=n->(15*n-6-3*cos(2*n*Pi/3)-sqrt(3)*sin(2*n*Pi/3))/9: seq(A047206(n), n=1..100); # Wesley Ivan Hurt, Jun 14 2016
MATHEMATICA
Select[Range[0, 200], MemberQ[{1, 3, 4}, Mod[#, 5]] &] (* Vladimir Joseph Stephan Orlovsky, Feb 12 2012 *)
PROG
(Magma) [ n : n in [1..150] | n mod 5 in [1, 3, 4] ]; // Vincenzo Librandi, Mar 31 2011
(PARI) a(n)=(5*n-1)\3 \\ Charles R Greathouse IV, Jul 01 2013
CROSSREFS
Cf. A001622.
Sequence in context: A059535 A061402 A330066 * A187474 A081031 A285681
KEYWORD
nonn,easy
STATUS
approved