[go: up one dir, main page]

login
A047616
Numbers that are congruent to {0, 1, 5} mod 8.
1
0, 1, 5, 8, 9, 13, 16, 17, 21, 24, 25, 29, 32, 33, 37, 40, 41, 45, 48, 49, 53, 56, 57, 61, 64, 65, 69, 72, 73, 77, 80, 81, 85, 88, 89, 93, 96, 97, 101, 104, 105, 109, 112, 113, 117, 120, 121, 125, 128, 129, 133, 136, 137, 141, 144, 145, 149, 152, 153, 157
OFFSET
1,3
FORMULA
From Wesley Ivan Hurt, Jun 09 2016: (Start)
G.f.: x^2*(1+4*x+3*x^2)/((x-1)^2*(1+x+x^2)).
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(n) = (24*n-30+3*cos(2*n*Pi/3)+5*sqrt(3)*sin(2*n*Pi/3))/9.
a(3k) = 8k-3, a(3k-1) = 8k-7, a(3k-2) = 8k-8. (End)
MAPLE
A047616:=n->(24*n-30+3*cos(2*n*Pi/3)+5*sqrt(3)*sin(2*n*Pi/3))/9: seq(A047616(n), n=1..100); # Wesley Ivan Hurt, Jun 09 2016
MATHEMATICA
Select[Range[0, 150], MemberQ[{0, 1, 5}, Mod[#, 8]] &] (* Wesley Ivan Hurt, Jun 09 2016 *)
Table[8 n + {0, 1, 5}, {n, 0, 200}]//Flatten (* Vincenzo Librandi, Jun 11 2016 *)
LinearRecurrence[{1, 0, 1, -1}, {0, 1, 5, 8}, 60] (* Harvey P. Dale, Jul 20 2024 *)
PROG
(Magma) [n : n in [0..150] | n mod 8 in [0, 1, 5]]; // Wesley Ivan Hurt, Jun 09 2016
(PARI) a(n)=n\3*8+[-3, 0, 1][n%3+1] \\ Charles R Greathouse IV, Jul 19 2016
CROSSREFS
Sequence in context: A213881 A179832 A334919 * A287551 A375713 A231065
KEYWORD
nonn,easy
STATUS
approved