OFFSET
1,2
LINKS
Bruno Berselli, Table of n, a(n) for n = 1..1000
Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).
FORMULA
From Bruno Berselli, Jul 18 2012: (Start)
G.f.: x^2*(2+2*x+x^2+3*x^3)/((1+x)*(1-x)^2*(1+x^2)).
a(n) = 2*n-2-(1+(-1)^n)*(1+i^n)/4, where i=sqrt(-1). (End)
From Wesley Ivan Hurt, Jun 02 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
E.g.f.: (6 - cos(x) + 4*(x - 1)*sinh(x) + (4*x - 5)*cosh(x))/2. - Ilya Gutkovskiy, Jun 03 2016
Sum_{n>=2} (-1)^n/a(n) = (2-sqrt(2))*Pi/16 + 5*log(2)/8 + sqrt(2)*log(sqrt(2)-1)/8. - Amiram Eldar, Dec 21 2021
MAPLE
MATHEMATICA
Select[Range[0, 120], MemberQ[{0, 2, 4, 5}, Mod[#, 8]] &] (* or *) LinearRecurrence[{1, 0, 0, 1, -1}, {0, 2, 4, 5, 8}, 60] (* Bruno Berselli, Jul 18 2012 *)
PROG
From Bruno Berselli, Jul 18 2012: (Start)
(Magma) [n: n in [0..120] | n mod 8 in [0, 2, 4, 5]];
(Maxima) makelist(2*n-2-(1+(-1)^n)*(1+%i^n)/4, n, 1, 60);
(PARI) concat(0, Vec((2+2*x+x^2+3*x^3)/((1+x)*(1-x)^2*(1+x^2))+O(x^60))) (End)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved