[go: up one dir, main page]

login
A047597
Numbers that are congruent to {0, 2, 3, 4, 5} mod 8.
1
0, 2, 3, 4, 5, 8, 10, 11, 12, 13, 16, 18, 19, 20, 21, 24, 26, 27, 28, 29, 32, 34, 35, 36, 37, 40, 42, 43, 44, 45, 48, 50, 51, 52, 53, 56, 58, 59, 60, 61, 64, 66, 67, 68, 69, 72, 74, 75, 76, 77, 80, 82, 83, 84, 85, 88, 90, 91, 92, 93, 96, 98, 99, 100, 101
OFFSET
1,2
FORMULA
From Chai Wah Wu, Jun 10 2016: (Start)
a(n) = a(n-1) + a(n-5) - a(n-6) for n > 6.
G.f.: x^2*(3*x^4 + x^3 + x^2 + x + 2)/(x^6 - x^5 - x + 1). (End)
From Wesley Ivan Hurt, Jul 28 2016: (Start)
a(n) = a(n-5) + 8 for n > 5.
a(n) = (40*n - 50 + 3*(n mod 5) + 3*((n+1) mod 5) + 3*((n+2) mod 5) - 2*((n+3) mod 5) - 7*((n+4) mod 5))/25.
a(5k) = 8k-3, a(5k-1) = 8k-4, a(5k-2) = 8k-5, a(5k-3) = 8k-6, a(5k-4) = 8k-8. (End)
MAPLE
A047597:=n->8*floor(n/5)+[(0, 2, 3, 4, 5)][(n mod 5)+1]: seq(A047597(n), n=0..100); # Wesley Ivan Hurt, Jul 28 2016
MATHEMATICA
Select[Range[0, 100], MemberQ[{0, 2, 3, 4, 5}, Mod[#, 8]] &] (* Wesley Ivan Hurt, Jul 28 2016 *)
LinearRecurrence[{1, 0, 0, 0, 1, -1}, {0, 2, 3, 4, 5, 8}, 70] (* Harvey P. Dale, Dec 15 2019 *)
PROG
(Magma) [n : n in [0..150] | n mod 8 in [0, 2, 3, 4, 5]]; // Wesley Ivan Hurt, Jul 28 2016
CROSSREFS
Sequence in context: A056804 A305399 A101547 * A309960 A247935 A005233
KEYWORD
nonn,easy
STATUS
approved