OFFSET
1,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,1,-1).
FORMULA
From Chai Wah Wu, Jun 10 2016: (Start)
a(n) = a(n-1) + a(n-5) - a(n-6) for n > 6.
G.f.: x^2*(3*x^4 + x^3 + x^2 + x + 2)/(x^6 - x^5 - x + 1). (End)
From Wesley Ivan Hurt, Jul 28 2016: (Start)
a(n) = a(n-5) + 8 for n > 5.
a(n) = (40*n - 50 + 3*(n mod 5) + 3*((n+1) mod 5) + 3*((n+2) mod 5) - 2*((n+3) mod 5) - 7*((n+4) mod 5))/25.
a(5k) = 8k-3, a(5k-1) = 8k-4, a(5k-2) = 8k-5, a(5k-3) = 8k-6, a(5k-4) = 8k-8. (End)
MAPLE
A047597:=n->8*floor(n/5)+[(0, 2, 3, 4, 5)][(n mod 5)+1]: seq(A047597(n), n=0..100); # Wesley Ivan Hurt, Jul 28 2016
MATHEMATICA
Select[Range[0, 100], MemberQ[{0, 2, 3, 4, 5}, Mod[#, 8]] &] (* Wesley Ivan Hurt, Jul 28 2016 *)
LinearRecurrence[{1, 0, 0, 0, 1, -1}, {0, 2, 3, 4, 5, 8}, 70] (* Harvey P. Dale, Dec 15 2019 *)
PROG
(Magma) [n : n in [0..150] | n mod 8 in [0, 2, 3, 4, 5]]; // Wesley Ivan Hurt, Jul 28 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved