[go: up one dir, main page]

login
A047582
Numbers that are congruent to {3, 5, 6, 7} mod 8.
1
3, 5, 6, 7, 11, 13, 14, 15, 19, 21, 22, 23, 27, 29, 30, 31, 35, 37, 38, 39, 43, 45, 46, 47, 51, 53, 54, 55, 59, 61, 62, 63, 67, 69, 70, 71, 75, 77, 78, 79, 83, 85, 86, 87, 91, 93, 94, 95, 99, 101, 102, 103, 107, 109, 110, 111, 115, 117, 118, 119, 123, 125
OFFSET
1,1
FORMULA
From Wesley Ivan Hurt, May 29 2016: (Start)
G.f.: x*(3+2*x+x^2+x^3+x^4) / ((x-1)^2*(1+x+x^2+x^3)).
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = (8*n+1-i^(2*n)-(2-i)*i^(-n)-(2+i)*i^n)/4 where i=sqrt(-1).
a(2k) = A047550(k), a(2k-1) = A047398(k). (End)
E.g.f.: (2 + sin(x) - 2*cos(x) + sinh(x) + 4*x*exp(x))/2. - Ilya Gutkovskiy, May 30 2016
Sum_{n>=1} (-1)^(n+1)/a(n) = (3*sqrt(2)-2)*Pi/16 - log(2)/8 + sqrt(2)*log(3-2*sqrt(2))/16. - Amiram Eldar, Dec 26 2021
MAPLE
A047582:=n->(8*n+1-I^(2*n)-(2-I)*I^(-n)-(2+I)*I^n)/4: seq(A047582(n), n=1..100); # Wesley Ivan Hurt, May 29 2016
MATHEMATICA
Table[(8n+1-I^(2n)-(2-I)*I^(-n)-(2+I)*I^n)/4, {n, 80}] (* Wesley Ivan Hurt, May 29 2016 *)
PROG
(Magma) [n : n in [0..150] | n mod 8 in [3, 5, 6, 7]]; // Wesley Ivan Hurt, May 29 2016
CROSSREFS
Sequence in context: A216782 A328952 A072600 * A333217 A342438 A301975
KEYWORD
nonn,easy
STATUS
approved