OFFSET
1,2
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).
FORMULA
From Wesley Ivan Hurt, May 29 2016: (Start)
G.f.: x*(1+4*x+x^2+x^3+x^4) / ((x-1)^2*(1+x+x^2+x^3)).
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = (8*n-1+i^(2*n)-(2+i)*i^(-n)-(2-i)*i^n)/4 where i=sqrt(-1).
E.g.f.: (2 - sin(x) - 2*cos(x) - sinh(x) + 4*x*exp(x))/2. - Ilya Gutkovskiy, May 30 2016
Sum_{n>=1} (-1)^(n+1)/a(n) = 3*sqrt(2)*Pi/16 - (sqrt(2)+2)*log(2)/16 + sqrt(2)*log(sqrt(2)+2)/8. - Amiram Eldar, Dec 24 2021
MAPLE
A047576:=n->(8*n-1+I^(2*n)-(2+I)*I^(-n)-(2-I)*I^n)/4: seq(A047576(n), n=1..100); # Wesley Ivan Hurt, May 29 2016
MATHEMATICA
Flatten[#+{1, 5, 6, 7}&/@(8Range[0, 20])] (* Harvey P. Dale, Apr 22 2011 *)
Select[Range[100], MemberQ[{1, 5, 6, 7}, Mod[#, 8]] &] (* Vincenzo Librandi, May 30 2016 *)
PROG
(Magma) [n : n in [0..150] | n mod 8 in [1, 5, 6, 7]]; // Wesley Ivan Hurt, May 29 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved