OFFSET
1,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,1,-1).
FORMULA
From Wesley Ivan Hurt, Jun 16 2016: (Start)
G.f.: x*(1+x+2*x^2+x^3+x^4+x^5+x^6) / ((x-1)^2*(1+x+x^2+x^3+x^4+x^5)).
a(n) = a(n-1) + a(n-6) - a(n-7) for n>7.
a(n) = (24*n-9-3*cos(n*Pi)-6*cos(n*Pi/3)+2*sqrt(3)*sin(2*n*Pi/3))/18.
a(6k) = 8k-1, a(6k-1) = 8k-2, a(6k-2) = 8k-3, a(6k-3) = 8k-4, a(6k-4) = 8k-6, a(6k-5) = 8k-7. (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = (3*sqrt(2)-1)*Pi/16 + sqrt(2)*log(sqrt(2)+2)/8 - (sqrt(2)+4)*log(2)/16. - Amiram Eldar, Dec 28 2021
MAPLE
A047572:=n->(24*n-9-3*cos(n*Pi)-6*cos(n*Pi/3)+2*sqrt(3)*sin(2*n*Pi/3))/18: seq(A047572(n), n=1..100); # Wesley Ivan Hurt, Jun 16 2016
MATHEMATICA
Select[Range[0, 100], MemberQ[{1, 2, 4, 5, 6, 7}, Mod[#, 8]] &] (* Wesley Ivan Hurt, Jun 16 2016 *)
PROG
(PARI) a(n)=n\6*8+[-1, 1, 2, 4, 5, 6][n%6+1] \\ Charles R Greathouse IV, Feb 24 2015
(Magma) [n : n in [0..100] | n mod 8 in [1, 2, 4, 5, 6, 7]]; // Wesley Ivan Hurt, Jun 16 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved