[go: up one dir, main page]

login
A047562
Numbers that are congruent to {3, 4, 5, 6, 7} mod 8.
1
3, 4, 5, 6, 7, 11, 12, 13, 14, 15, 19, 20, 21, 22, 23, 27, 28, 29, 30, 31, 35, 36, 37, 38, 39, 43, 44, 45, 46, 47, 51, 52, 53, 54, 55, 59, 60, 61, 62, 63, 67, 68, 69, 70, 71, 75, 76, 77, 78, 79, 83, 84, 85, 86, 87, 91, 92, 93, 94, 95, 99, 100, 101, 102, 103
OFFSET
1,1
FORMULA
From Chai Wah Wu, May 29 2016: (Start)
a(n) = a(n-1) + a(n-5) - a(n-6) for n>6.
G.f.: x*(x^5 + x^4 + x^3 + x^2 + x + 3)/(x^6 - x^5 - x + 1). (End)
From Wesley Ivan Hurt, Aug 16 2016: (Start)
a(n) = a(n-5) + 8 for n > 5.
a(n) = n + 2 + 3*floor((n-1)/5).
a(n) = (8*n + 7 - 3*((n+4) mod 5))/5.
a(5k) = 8k-1, a(5k-1) = 8k-2, a(5k-2) = 8k-3, a(5k-3) = 8k-4, a(5k-4) = 8k-5. (End)
MAPLE
A047562:=n->8*floor(n/5)+[3, 4, 5, 6, 7][(n mod 5)+1]: seq(A047562(n), n=0..100); # Wesley Ivan Hurt, Aug 16 2016
MATHEMATICA
LinearRecurrence[{1, 0, 0, 0, 1, -1}, {3, 4, 5, 6, 7, 11}, 50] (* G. C. Greubel, May 29 2016 *)
#+{3, 4, 5, 6, 7}&/@(8*Range[0, 20])//Flatten (* Harvey P. Dale, May 25 2020 *)
PROG
(Magma) [n : n in [0..150] | n mod 8 in [3, 4, 5, 6, 7]]; // Wesley Ivan Hurt, Aug 16 2016
CROSSREFS
Sequence in context: A050034 A039056 A326754 * A354270 A137922 A176984
KEYWORD
nonn,easy
STATUS
approved