[go: up one dir, main page]

login
A047532
Numbers that are congruent to {0, 2, 3, 7} mod 8.
1
0, 2, 3, 7, 8, 10, 11, 15, 16, 18, 19, 23, 24, 26, 27, 31, 32, 34, 35, 39, 40, 42, 43, 47, 48, 50, 51, 55, 56, 58, 59, 63, 64, 66, 67, 71, 72, 74, 75, 79, 80, 82, 83, 87, 88, 90, 91, 95, 96, 98, 99, 103, 104, 106, 107, 111, 112, 114, 115, 119, 120, 122, 123
OFFSET
1,2
FORMULA
From Wesley Ivan Hurt, May 29 2016: (Start)
G.f.: x^2*(2+x+4*x^2+x^3)/((x-1)^2*(1+x+x^2+x^3)).
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = 2*n+(1+i)*(4*i-4+(1-i)*i^(2n)+i^(-n)-i^(1+n))/4 where i=sqrt(-1).
a(2k) = A047524(k), a(2k-1) = A047470(k). (End)
E.g.f.: (2 + sin(x) + cos(x) + (4*x - 5)*sinh(x) + (4*x - 3)*cosh(x))/2. - Ilya Gutkovskiy, May 29 2016
Sum_{n>=2} (-1)^n/a(n) = (3-sqrt(2))*log(2)/8 + sqrt(2)*log(2+sqrt(2))/4 - (2*sqrt(2)-1)*Pi/16. - Amiram Eldar, Dec 21 2021
MAPLE
A047532:=n->2*n+(1+I)*(4*I-4+(1-I)*I^(2*n)+I^(-n)-I^(1+n))/4: seq(A047532(n), n=1..100); # Wesley Ivan Hurt, May 29 2016
MATHEMATICA
Table[2n+(1+I)*(4*I-4+(1-I)*I^(2n)+I^(-n)-I^(1+n))/4, {n, 80}] (* Wesley Ivan Hurt, May 29 2016 *)
PROG
(Magma) [n : n in [0..150] | n mod 8 in [0, 2, 3, 7]]; // Wesley Ivan Hurt, May 29 2016
CROSSREFS
Sequence in context: A088340 A288696 A163517 * A225378 A028808 A029718
KEYWORD
nonn,easy
STATUS
approved