[go: up one dir, main page]

login
A047514
Numbers that are congruent to {3, 4, 6, 7} mod 8.
1
3, 4, 6, 7, 11, 12, 14, 15, 19, 20, 22, 23, 27, 28, 30, 31, 35, 36, 38, 39, 43, 44, 46, 47, 51, 52, 54, 55, 59, 60, 62, 63, 67, 68, 70, 71, 75, 76, 78, 79, 83, 84, 86, 87, 91, 92, 94, 95, 99, 100, 102, 103, 107, 108, 110, 111, 115, 116, 118, 119, 123, 124
OFFSET
1,1
FORMULA
From Wesley Ivan Hurt, May 27 2016: (Start)
G.f.: x*(3+x+2*x^2+x^3+x^4) / ((x-1)^2*(1+x+x^2+x^3)).
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = (1+i)*(4*n-4*n*i+(i-1)*i^(2*n)+i^(1-n)-i^n)/4 where i=sqrt(-1).
a(2k) = A047535(k), a(2k-1) = A047398(k). (End)
E.g.f.: (2 + sin(x) - cos(x) + (4*x + 1)*sinh(x) + (4*x - 1)*cosh(x))/2. - Ilya Gutkovskiy, May 27 2016
From Wesley Ivan Hurt, Aug 10 2016: (Start)
a(n) = a(n-4) + 8 for n > 4.
a(4*k) = 8*k-1, a(4*k-1) = 8*k-2, a(4*k-2) = 8*k-4, a(4*k-3) = 8*k-5. (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = (2*sqrt(2)-1)*Pi/16 - (sqrt(2)-1)*log(2)/8 + sqrt(2)*log(2-sqrt(2))/4. - Amiram Eldar, Dec 26 2021
MAPLE
A047514:=n->(1+I)*(4*n-4*n*I+(I-1)*I^(2*n)+I^(1-n)-I^n)/4: seq(A047514(n), n=1..100); # Wesley Ivan Hurt, May 27 2016
MATHEMATICA
Table[(1+I)*(4n-4n*I+(I-1)*I^(2n)+I^(1-n)-I^n)/4, {n, 80}] (* Wesley Ivan Hurt, May 27 2016 *)
LinearRecurrence[{1, 0, 0, 1, -1}, {3, 4, 6, 7, 11}, 100] (* Vincenzo Librandi, Aug 11 2016 *)
PROG
(Magma) [n : n in [0..150] | n mod 8 in [3, 4, 6, 7]]; // Wesley Ivan Hurt, May 27 2016
CROSSREFS
Sequence in context: A294488 A364341 A335059 * A345716 A011975 A202112
KEYWORD
nonn,easy
STATUS
approved