[go: up one dir, main page]

login
A047506
Numbers that are congruent to {4, 6, 7} mod 8.
1
4, 6, 7, 12, 14, 15, 20, 22, 23, 28, 30, 31, 36, 38, 39, 44, 46, 47, 52, 54, 55, 60, 62, 63, 68, 70, 71, 76, 78, 79, 84, 86, 87, 92, 94, 95, 100, 102, 103, 108, 110, 111, 116, 118, 119, 124, 126, 127, 132, 134, 135, 140, 142, 143, 148, 150, 151, 156, 158
OFFSET
1,1
FORMULA
G.f.: x*(4+2*x+x^2+x^3)/((1+x+x^2)*(x-1)^2). - R. J. Mathar, Nov 06 2015
From Wesley Ivan Hurt, Jun 09 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(n) = (24*n+3-12*cos(2*n*Pi/3)+2*sqrt(3)*sin(2*n*Pi/3))/9.
a(3k) = 8k-1, a(3k-1) = 8k-2, a(3k-2) = 8k-4. (End)
MAPLE
A047506:=n->(24*n+3-12*cos(2*n*Pi/3)+2*sqrt(3)*sin(2*n*Pi/3))/9: seq(A047506(n), n=1..100); # Wesley Ivan Hurt, Jun 09 2016
MATHEMATICA
Select[Range[0, 150], MemberQ[{4, 6, 7}, Mod[#, 8]] &] (* Wesley Ivan Hurt, Jun 09 2016 *)
PROG
(Magma) [n : n in [0..150] | n mod 8 in [4, 6, 7]]; // Wesley Ivan Hurt, Jun 09 2016
CROSSREFS
Sequence in context: A056853 A024566 A166457 * A310656 A102136 A102142
KEYWORD
nonn,easy
STATUS
approved