[go: up one dir, main page]

login
A047503
Numbers that are congruent to {0, 2, 3, 4, 5, 7} mod 8.
3
0, 2, 3, 4, 5, 7, 8, 10, 11, 12, 13, 15, 16, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 36, 37, 39, 40, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 64, 66, 67, 68, 69, 71, 72, 74, 75, 76, 77, 79, 80, 82, 83, 84, 85, 87
OFFSET
1,2
FORMULA
G.f.: x^2*(2+x+x^2+x^3+2*x^4+x^5) / ( (1+x)*(1+x+x^2)*(x^2-x+1)*(x-1)^2 ). - R. J. Mathar, Nov 06 2015
From Wesley Ivan Hurt, Jun 16 2016: (Start)
a(n) = a(n-1) + a(n-6) - a(n-7) for n>7.
a(n) = (24*n-21+3*cos(n*Pi)+2*sqrt(3)*cos((1+4*n)*Pi/6)-6*sin((1-2*n)*Pi/6))/18.
a(6k) = 8k-1, a(6k-1) = 8k-3, a(6k-2) = 8k-4, a(6k-3) = 8k-5, a(6k-4) = 8k-6, a(6k-5) = 8k-8. (End)
Sum_{n>=2} (-1)^n/a(n) = log(2)/8 - sqrt(2)*Pi/16 - sqrt(2)*log(99-70*sqrt(2))/16. - Amiram Eldar, Dec 27 2021
MAPLE
A047503:=n->(24*n-21+3*cos(n*Pi)+2*sqrt(3)*cos((1+4*n)*Pi/6)-6*sin((1-2*n)*Pi/6))/18: seq(A047503(n), n=1..100); # Wesley Ivan Hurt, Jun 16 2016
MATHEMATICA
Select[Range[0, 100], MemberQ[{0, 2, 3, 4, 5, 7}, Mod[#, 8]] &] (* Wesley Ivan Hurt, Jun 16 2016 *)
LinearRecurrence[{1, 0, 0, 0, 0, 1, -1}, {0, 2, 3, 4, 5, 7, 8}, 100] (* Harvey P. Dale, Dec 25 2023 *)
PROG
(Magma) [n : n in [0..100] | n mod 8 in [0, 2, 3, 4, 5, 7]]; // Wesley Ivan Hurt, Jun 16 2016
CROSSREFS
Sequence in context: A051705 A039082 A340608 * A228803 A037014 A261131
KEYWORD
nonn,easy
STATUS
approved