OFFSET
1,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,1,-1).
FORMULA
G.f.: x^2*(2+x+x^2+x^3+2*x^4+x^5) / ( (1+x)*(1+x+x^2)*(x^2-x+1)*(x-1)^2 ). - R. J. Mathar, Nov 06 2015
From Wesley Ivan Hurt, Jun 16 2016: (Start)
a(n) = a(n-1) + a(n-6) - a(n-7) for n>7.
a(n) = (24*n-21+3*cos(n*Pi)+2*sqrt(3)*cos((1+4*n)*Pi/6)-6*sin((1-2*n)*Pi/6))/18.
a(6k) = 8k-1, a(6k-1) = 8k-3, a(6k-2) = 8k-4, a(6k-3) = 8k-5, a(6k-4) = 8k-6, a(6k-5) = 8k-8. (End)
Sum_{n>=2} (-1)^n/a(n) = log(2)/8 - sqrt(2)*Pi/16 - sqrt(2)*log(99-70*sqrt(2))/16. - Amiram Eldar, Dec 27 2021
MAPLE
A047503:=n->(24*n-21+3*cos(n*Pi)+2*sqrt(3)*cos((1+4*n)*Pi/6)-6*sin((1-2*n)*Pi/6))/18: seq(A047503(n), n=1..100); # Wesley Ivan Hurt, Jun 16 2016
MATHEMATICA
Select[Range[0, 100], MemberQ[{0, 2, 3, 4, 5, 7}, Mod[#, 8]] &] (* Wesley Ivan Hurt, Jun 16 2016 *)
LinearRecurrence[{1, 0, 0, 0, 0, 1, -1}, {0, 2, 3, 4, 5, 7, 8}, 100] (* Harvey P. Dale, Dec 25 2023 *)
PROG
(Magma) [n : n in [0..100] | n mod 8 in [0, 2, 3, 4, 5, 7]]; // Wesley Ivan Hurt, Jun 16 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved