[go: up one dir, main page]

login
A047502
Numbers that are congruent to {2, 3, 4, 5, 7} mod 8.
1
2, 3, 4, 5, 7, 10, 11, 12, 13, 15, 18, 19, 20, 21, 23, 26, 27, 28, 29, 31, 34, 35, 36, 37, 39, 42, 43, 44, 45, 47, 50, 51, 52, 53, 55, 58, 59, 60, 61, 63, 66, 67, 68, 69, 71, 74, 75, 76, 77, 79, 82, 83, 84, 85, 87, 90, 91, 92, 93, 95, 98, 99, 100, 101, 103
OFFSET
1,1
FORMULA
G.f.: ( x*(2+x+x^2+x^3+2*x^4+x^5) ) / ( (x^4+x^3+x^2+x+1)*(x-1)^2 ). - R. J. Mathar, Nov 06 2015
From Wesley Ivan Hurt, Jul 31 2016: (Start)
a(n) = a(n-1) + a(n-5) - a(n-6) for n > 6, a(n) = a(n-5) + 8 for n > 5.
a(n) = (40*n - 15 - 2*(n mod 5) + 3*((n+1) mod 5) + 3*((n+2) mod 5) + 3*((n+3) mod 5) - 7*((n+4) mod 5))/25.
a(5k) = 8k-1, a(5k-1) = 8k-3, a(5k-2) = 8k-4, a(5k-3) = 8k-5, a(5k-4) = 8k-6. (End)
MAPLE
A047502:=n->8*floor(n/5)+[(2, 3, 4, 5, 7)][(n mod 5)+1]: seq(A047502(n), n=0..100); # Wesley Ivan Hurt, Jul 31 2016
MATHEMATICA
Select[Range[0, 100], MemberQ[{2, 3, 4, 5, 7}, Mod[#, 8]] &] (* Wesley Ivan Hurt, Jul 31 2016 *)
PROG
(Magma) [n : n in [0..150] | n mod 8 in [2, 3, 4, 5, 7]]; // Wesley Ivan Hurt, Jul 31 2016
CROSSREFS
Sequence in context: A137929 A094617 A254318 * A356311 A117092 A373255
KEYWORD
nonn,easy
STATUS
approved